

ProjectCodeMeter

ProjectCodeMeter Pro

Software Development Cost Estimation Tool

Users Manual
Document version 202000501

Home Page: www.ProjectCodeMeter.com

javascript:parent.history.back();
javascript:parent.history.go(1);
http://www.projectcodemeter.com
http://www.projectcodemeter.com

ProjectCodeMeter
Is a professional software tool for project managers to measure and estimate the Time, Cost, Complexity,
Quality and Maintainability of software projects as well as Development Team Productivity by analyzing their
source code. By using a modern software sizing algorithm called Weighted Micro Function Points (WMFP) a
successor to solid ancestor scientific methods as COCOMO, COSYSMO, Maintainability Index, Cyclomatic
Complexity, and Halstead Complexity, It produces more accurate results than traditional software sizing tools,
while being faster and simpler to configure.

Tip: You can click the icon on the bottom right corner of each area of ProjectCodeMeter to get help specific
for that area.

General Introduction
 Quick Getting Started Guide
 Introduction to ProjectCodeMeter

Quick Function Overview
 Measuring project cost and development time
 Measuring additional cost and time invested in a project revision
 Producing a price quote for an Existing project
 Monitoring an Ongoing project development team productivity
 Evaluating development team past productivity
 Evaluating the attractiveness of an outsourcing price quote
 Predicting a Future project schedule and cost for internal budget planning
 Predicting a price quote and schedule for a Future project
 Evaluating the quality of a project source code

Software Screen Interface
 Project Folder Selection
 Settings
 File List
 Charts
 Summary
 Reports

Extended Information
 System Requirements
 Supported File Types
 Command Line Parameters
 Frequently Asked Questions

javascript:parent.history.back();
javascript:parent.history.go(1);
http://www.projectcodemeter.com

ProjectCodeMeter

Introduction to the ProjectCodeMeter software

ProjectCodeMeter is a professional software tool for project managers to measure and estimate the Time, Cost,
Complexity, Quality and Maintainability of software projects as well as Development Team Productivity by
analyzing their source code. By using a modern software sizing algorithm called Weighted Micro Function
Points (WMFP) a successor to solid ancestor scientific methods as COCOMO, Cyclomatic Complexity, and
Halstead Complexity. It gives more accurate results than traditional software sizing tools, while being faster
and simpler to configure. By using ProjectCodeMeter a project manager can get insight into a software source
code development within minutes, saving hours of browsing through the code.

Software Development Cost Estimation
ProjectCodeMeter measures development effort done in applying a project design into code (by an average
programmer), including: coding, debugging, nominal code refactoring and revision, testing, and bug fixing. In
essence, the software is aimed at answering the question "How long would it take for an average programmer
to create this software?" which is the key question in putting a price tag for a software development effort,
rather than the development time it took your particular programmer in you particular office environment, which
may not reflect the price a client may get from a less/more efficient competitor, this is where a solid statistical
model comes in, the APPW which derives its data from study of traditional cost models, as well as numerous
new study cases factoring for modern software development methodologies.

Software Development Cost Prediction
ProjectCodeMeter enables predicting the time and cost it will take to develop a software, by using a feature
analogous to the project you wish to create. This analogy based cost estimation model is based on the premise
that it requires less expertise and experience to select a project with similar functionality, than to accurately
answer numerous questions rating project attributes (cost drivers), as in traditional cost estimation models such
as COCOMO, and COSYSMO.
In producing a price quote for implementing a future project, the desired cost estimation is the cost of that
implementation by an average programmer, as this is the closest estimation to the price quote your competitors
are offering.

Software Development Productivity Evaluation
Evaluating your development team productivity is a major factor in management decision making, influencing
many aspects of project management, including: role assignments, target product price tag, schedule and budget
planning, evaluating market competitiveness, and evaluating the cost-effectiveness of outsourcing.
ProjectCodeMeter allows a project manager to closely follow the project source code progress within minutes,
getting an immediate indication if development productivity drops. ProjectCodeMeter enables actively
monitoring the progress of software development, by adding up multiple analysis measurement results (called
milestones). The result is automatically compared to the Project Time Span, and the APPW statistical model of
an average development team, and (if available) the Actual Time, Producing a productivity percentage value
for rating your team performance.

Software Sizing
The time measurement produced by ProjectCodeMeter gives a standard, objective, reproducible, and
comparable value for evaluating software size, even in cases where two software source codes contain the
same line count (SLOC), since WMFP takes source code complexity into account.

Code Quality Inspection
The code metrics produced by ProjectCodeMeter give an indication to some basic and essential source code
qualities that affect maintainability, reuse and peer review. ProjectCodeMeter also shows textual notices if any
of these metrics indicate a problem.

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com

Wide Programming Language Support
ProjectCodeMeter supports many programming languages, including C, C++, C#, CUDA, Java, ObjectiveC,
DigitalMars D, Javascript, JScript, Android RenderScript, Arduino Sketch, Adobe Flash/Flex ActionScript,
MetaQuotes MetaTrader MQL, UnrealEngine, and PHP. see a complete list of supported file types.

See the Quick Getting Started Guide for a basic workflow of using ProjectCodeMeter.

ProjectCodeMeter

System Requirements

- Mouse (or other pointing device such as touchpad or touchscreen)
- Windows NT 5 or better (Windows XP / 2000 / 2003 / Vista / 7 / 10 and newer)
- Adobe Flash ActiveX plugin 9.0 or newer for IE
- Microsoft Visual C 2005 Runtime Redistributables
- Display resolution 1024x768 16bit color or higher
- Internet connection (once for license activation only)
- At least 50MB of writable disk storage space
- At least 1GB of system RAM (minimum 800MB free RAM)

Optionally recommended:
- WinMerge, KDiff3, or Meld installed (for viewing textual file content differences)
- Microsoft Office Excel installed (for editing reports)

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
http://get.adobe.com/flashplayer/completion/?installer=Flash_Player_10.1_for_Windows_Internet_Explorer
http://winmerge.org
https://kdiff3.sourceforge.net
https://meldmerge.org

ProjectCodeMeter

Quick Getting Started Guide

ProjectCodeMeter can measure and estimate the Development Time, Cost and Complexity of software projects.
The basic workflow of using ProjectCodeMeter is selecting the Project Folder (1 on the top left), Selecting the
appropriate Settings (2 on the top right) then clicking the Analyze button (3 on the top middle). The results are
shown at the bottom, both as Charts (on the bottom left) and as a Summary (on the bottom right).

For extended result details you can see the File List area (on the middle section) to get per file measurements,
as well as look at the Report files located at the project folder under the newly generated sub-folder
".PCMReports" which can be easily accessed by clicking the "Reports" button (on the top right).

Tips:
Clicking the icon on the bottom right corner of each area of ProjectCodeMeter shows help specific for that
area.
You can type/paste folder paths into the box instead of selecting them.

For detailed step by step instructions see Steps for Sizing an Existing Project.
For more tasks which can be achieved with ProjectCodeMeter see the Function Overview part of the main
index.

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
file:///C:/Dev/ProjectPricingVS2005/Help/UI_selectfolder.htm
file:///C:/Dev/ProjectPricingVS2005/Help/FN_results.htm

ProjectCodeMeter

Programming Languages and File Types

ProjectCodeMeter analyzes the following Programming Languages and File Types:

C expected file extensions .C .CC , [Notes: 1,2,5]
C++ expected file extensions .CPP .CXX , [Notes: 1,2,3,5,7]
C# and SilverLight expected file extensions .CS .ASMX , [Notes: 1,2,5,7]
JavaScript, JScript an TypeScript expected file extensions .JS .JSE .HTM .HTML .XHTML .ASP .HTA
.ASPX , .TS [Notes: 4,5,6]
Objective C expected file extensions .M .MM, [Notes: 5]
Arduino Nano Sketch expected file extensions .INO , [Notes: 1,2,5]
Nvidia CUDA expected file extensions .CU , [Notes: 1,2,5]
UnrealScript v2 and v3 expected file extensions .UC
MetaTrader MQL4 and MQL5 expected file extensions .MQ4 .MQ5 .MQT [Notes: 1]
Flash/Flex ActionScript expected file extensions .AS .MXML, [Notes: 6]
Android RenderScript expected file extensions .RS [Notes: 5]
Java expected file extensions .JAVA .JAV .J, [Notes: 5]
J# expected file extensions .JSL, [Notes: 5]
DigitalMars D expected file extensions .D, [Notes: 5]
PHP expected file extensions .PHP, [Notes: 5,6]

Language Notes and Exceptions:
1. Does not support placing executable code in header files (.h , .hpp, .mqh)
2. Can not correctly detect using macro definitions for replacing default language syntax, for example: #define
LOOP while
3. Accuracy may be reduced with C++ projects extensively using STL operator overloading and templates.
4. Supports semicolon ended statements coding style only.
5. Does not measure inlining a second programming language in the program output, for example embedding
JavaScript in PHP:
 echo('<script type="text/javascript">window.scrollTo(0,0);</script>');
 you will need to include the second language in an external file to be properly measured, for example:
 include('scroller.js');
6. Does not measure HTML tags and CSS elements, as these are usually generated by WYSIWYG graphic
editors
7. Resource design files (.RC .RES .RESX .XAML) are not measured

General notes
Your source file name extension should match the programming language inside it (for example naming a PHP
code with an .HTML extension is not supported).
ProjectCodeMeter will do its best to detect the compiler toolchain, platform, or application infrastructure
provider (AIP) for the source file and adjust measurements accordingly.

Programming Environments and Runtimes
ProjectCodeMeter supports source code written for almost all environments which use the file types it can
analyze. These include:
Oracle/Sun Java Standard Editions (J2SE)
Oracle/Sun Java Enterprise Edition (J2EE)
Oracle/Sun Java Micro Edition (J2ME)
Oracle/Sun Java Developer Kit (JDK)
IBM Java VM and WebSphere

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com

Google Android (SDK, NDK)
WABA JVM (SuperWABA, TotalCross)
Microsoft Visual C++
Microsoft J# (J Sharp) .NET
Microsoft Java Virtual Machine (MS-JVM)
Microsoft C# (C Sharp) .NET
Mono
Microsoft SilverLight
Windows Scripting Engine (JScript)
IIS Active Server Pages (ASP)
Nokia QT
Macromedia / Adobe Flash
Adobe Flex
Adobe Flash Builder
Adobe AIR
PHP
SPHP
Apple iPhone iOS
Firefox / Mozilla Gecko Engine
SpiderMonkey engine
Unreal Engine
Gnu Toolchain GCC, G++, Clang (all platforms)
Gnu CGJ (all platforms)
LLVM
Arduino Ino
SDCC Small Device C Compiler
ARM RealView
Keil
Node.js
MetaQuotes MetaTrader
Any trader or forex platform supporting MetaQuotes language indicator expert script

ProjectCodeMeter

Activating or Changing License Key

ProjectCodeMeter is bundled with the License Manager application, which was installed in the same folder as
ProjectCodeMeter.If no active license exists, Running ProjectCodeMeter will automatically launch the License
Manager.

To start a trial evaluation of the software, click the "Trial" button on the License Manager.
If you have purchased a License, enter the License Name and Key in the License Manager, then press OK.

Activation of either Trial or a Full License requires an internet connection, after that point you may disconnect
from the internet. Only licman.exe connects to the internet licensing server when you select one of the buttons.
ProjectCodeMeter.exe does not access the internet at any point.

To change a license key when a valid one exists, launch the License Manager manually:
go to your Windows: Start - Programs - ProjectCodeMeter - LicenseManager.
Alternatively you can run licman.exe from the ProjectCodeMeter installation folder.
The follow the on screen instructions to enter the new license details.

Activation Notes and Troubleshooting:

- Please make sure you install the latest version of ProjectCodeMeter (download from our website)
- ProjectCodeMeter should run as the same Windows user as License Manager (please make sure you run
License Manager from the same folder as ProjectCodeMeter, and under the same user, i.e if you run one As
Administrator, the other should be ran the same way, otherwise you will need to either install
ProjectCodeMeter to C:\ProjectCodeMeter or manually copy the file "license.k" to your ProjectCodeMeter
folder)
- Your PC user account may have restrictions (please ask your IT staff for help, or run as administrator)
- Your antivirus has blocked or sandboxed ProjectCodeMeter: You may need to approve (Unblock) the License
Manager (licman.exe) in your Windows Firewall (or ZoneAlarm / Antivirus), or disable them during
activation.
- In case your internet connection requires a Proxy, Please make sure your proxy settings is set in your windows
"Control Panel"- "Internet Options"-"Connections"-"LAN Settings".
- Your PC clock time was incorrect when installing (you may need to set your PC time/zone to the one you used
when ProjectCodeMeter was installed)
- In case ProjectCodeMeter trial was previously installed on your PC and trial period has passed, you may
need to purchase a license (trial is allowed only once)
- Please make sure to install ProjectCodeMeter using the installer only, as manually copying the files won't
work.
- Try uninstalling ProjectCodeMeter then re-installing (WARNING: this may delete most of your
ProjectCodeMeter settings and templates, so back them up first)

To purchase a license please visit the website: www.ProjectCodeMeter.com
For any licensing questions contact ProjectCodeMeter support at:
email: Support@ProjectCodeMeter.com
website: www.ProjectCodeMeter.com/support

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
http://www.projectcodemeter.com
http://www.projectcodemeter.com
mailto:Support@ProjectCodeMeter.com
http://www.projectcodemeter.com/support

ProjectCodeMeter

Steps for Sizing Future Project for Cost Prediction or Price Quote

This process enables predicting the time and cost it will take to develop a software, by using a feature
analogous to the project you wish to create. The closer the functionality of the project you select, the more
accurate the results will be. This analogy based cost estimation model is based on the premise that it requires
less expertise and experience to select a project with similar functionality, than to accurately answer numerous
questions rating project attributes (cost drivers), as in traditional cost estimation models such as COCOMO,
and COSYSMO.
In producing a price quote for implementing a future project, the desired cost estimation is the cost of that
implementation by an average programmer, as this is the closest estimation to the price quote your competitors
are offering.

Step by step instructions:
 1. Select a software project with similar functionality to the future project you plan on developing. Usually an
older project of yours, or a downloaded Open Source project from one of the open source repository websites
such as SourceForge (www.sf.net) or Google Code (code.google.com)
 2. Make sure you don't have any open ProjectCodeMeter report files in your spreadsheet or browser, as these
files will be updated
 3. Put the project source code in a folder on your local disk (excluding any auto generated files, for cost
prediction exclude files which functionality is covered by code library you already have)
 4. Select this folder into the Project Folder textbox
 5. Select the Settings describing the project (make sure not to select "Differential comparison"). Note that for
producing a price quote it is recommended to select the best Debugging Tools type available for that platform,
rather than the ones you have, since your competitor probably uses these and therefore can afford a lower price
quote.
 6. Click "Analyze", when the process finishes the results will be at the bottom right summary screen

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
http://www.sourceforge.net
http://code.google.com
file:///C:/Dev/ProjectPricingVS2005/Help/UI_selectfolder.htm

ProjectCodeMeter

Differential Sizing of the Changes Between 2 Revisions of the Same Project

This process enables comparing an older version of the project to a newer one, as results will measure the time
and cost of the delta (change) between the two versions. ProjectCodeMeter performs a truly differential
source code comparison since analysis is based on a parser, free from the "negative SLOC" problem.

Step by step instructions:
 1. Make sure you don't have any open ProjectCodeMeter report files in your spreadsheet or browser, as these
files will be updated
 2. Put on your local disk a folder with the current project revision (excluding any auto generated files, files
created by 3rd party, files taken from previous projects)
 3. Select this folder into the Project Folder textbox
 4. Click to select the Differential Comparison checkbox to enable checking only revision differences
 5. Put on your local disk a folder with an older revision of your project , can be the code starting point
(skeleton or code templates) or any previous version
 6. Select this folder into the Old Version Folder textbox
 7. Select the Settings describing the current version of the project
 8. Click "Analyze", when the analysis process finishes the results will be shown at the bottom right summary
screen

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
file:///C:/Dev/ProjectPricingVS2005/Help/UI_selectfolder.htm
file:///C:/Dev/ProjectPricingVS2005/Help/UI_selectfolder.htm

ProjectCodeMeter

Cumulative Differential Analysis

This process enables actively or retroactively monitoring the progress of software development, by adding up
multiple analysis measurement results (called milestones). It is done by comparing the previous version of the
project to the current one, accumulating the time and cost delta (difference) between the two versions.
Only when the software is in this mode, each analysis will be added to History Report, and an auto-backup of
the source files will be made into the ".Previous" sub-folder of your project folder.
Using this process allows to more accurately measure software projects developed using Agile lifecycle
methodologies.

Step by step instructions:
 1. Make sure you don't have any open ProjectCodeMeter report files in your spreadsheet or browser, as these
files will be updated
 2. Put on your local disk a folder with the current project revision (excluding any auto generated files, files
created by 3rd party, files taken from previous projects) if you already have such folder from former analysis
milestone, then use it instead and copy the latest source files into it.
 3. Select this folder into the Project Folder textbox
 4. Click the Differential Comparison checkbox to enable checking only revision differences
 5. Clear the Old Version Folder textbox, so that the analysis will be made against the auto-backup version, and
an auto-backup will be created after the first milestone
 6. Optionally set the "When analysis ends:" option to "Open History Report" as the History Report is the most
relevant to us in this process
 7. Select the Settings describing the current version of the project
 8. Click "Analyze", when the analysis process finishes the results for this milestone will be shown at the
bottom right summary screen, While results for the overall project history will be written to the History Report
file.
 9. Optionally, if you know the actual time it took to develop this project revision from the previous version
milestone, you can input the number (in hours) in the Actual Time column at the end of the milestone row in the
History Report file, this will allow you the see the Average Development Efficiency of your development team
(indicated in that report) .

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
file:///C:/Dev/ProjectPricingVS2005/Help/UI_selectfolder.htm

ProjectCodeMeter

Estimating a Future project schedule and cost for internal budget planning

When planning a software project, you need to verify that project development is within the time and budget
constraints available to your organization or allocated to the project, as well as making sure adequate profit
margin remains, after deducting costs from the target price tag.

Step by step instructions:
 1. Create a project folder with a collection of files with similar functionality needed in your future project.
Usually take files from older projects of yours, or downloaded Open Source projects from one of the open
source repository websites. Note the code DOESN'T need to be compilable, so no need to fix any errors or
create an actual IDE project or build scripts, nor adding any auto generated files, and files which functionality
is covered by code libraries you already have.
 2. Make sure you don't have any open ProjectCodeMeter report files in your spreadsheet or browser, as it
prevents these files from being updated.
 3. Select this folder into the Project Folder textbox (make sure NOT to select "Differential comparison").
 4. Select the Settings describing the project and the tools available to your development team, as well as the
actual average gross Price Per Hour cost of 1 developer (including salaries, taxes, benefits, office rent,
support staff costs, and so on), easiest way to get this ballpark figure is by taking your entire company expenses
per hour, divide by the amount of simultaneously developed projects then divide by amount of developers for
this project.
 5. Click the "Analyze" button. When analysis finishes, Time and Cost results will be shown at the bottom right
summary screen

It is always recommended to plan the budget and time according to average programmer time (as measured by
ProjectCodeMeter) without modification, since even for faster development teams productivity may vary due to
personal and environmental circumstances, and development team personnel may change during the project
development lifecycle.
In case you still want to factor for your development team speed, and your development team programmers are
faster or slower than the average (measured previously using Productivity Sizing), divide the resulting time and
cost by the factor of this difference, for example if your development team is twice as fast than an average
programming team, divide the time and cost by 2. If your team is half the speed of the average, then divide the
results by 0.5 to get the actual time and cost of development for your particular team.
However, beware not to overestimate the speed of your development team, as it will lead to budget and time
overflow.

In your final report, Use the ProjectCodeMeter Time and Cost results as the Development component of
 budget, add the current market average costs for the other relevant components shown in the diagram above (or

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
file:///C:/Dev/ProjectPricingVS2005/Help/UI_selectfolder.htm

if risking factoring for your specific organization, use your organizations average costs). The resulting price
should be the estimated budget and time for the project.

Optionally, You can add the minimal profit percentage making the sale worthwhile to obtain the bottom margin
for a price quote you produce to your clients. For calculating the top margin for a price quote, use the
process Estimating a Future project schedule and cost for producing a price quote.

ProjectCodeMeter

Measuring past project for evaluating development team productivity

Evaluating your development team productivity is a major factor in management decision making, influencing
many aspects of project management, including: role assignments, target product price tag, schedule planning,
evaluating market competitiveness, compliance with Six Sigma / CMMI / ISO / IEEE / CIPS / SCRUM / LEAN
certification, and evaluating the cost-effectiveness of outsourcing.
This process is suitable for measuring productivity of both single programmers and development teams.

Step by step instructions:
 1. Make sure you don't have any open ProjectCodeMeter report files in your spreadsheet or browser, as these
files will be updated
 2. Using Windows explorer, Identify files to be estimated, usually only files created for this project (excluding
 files auto-generated by the development tools, data files, and files provided by a third party)
 3. Copy these files to a separate new folder
 4. Select this folder into the Project Folder textbox
 5. Set the "When analysis ends:" option to "Open Productivity Report" as the Productivity Report is the most
relevant in this process
 6. Select the Settings describing the project (make sure NOT to select "Differential comparison")
 7. Click the "Analyze" button. When analysis finishes, Time results will be shown at the bottom right summary
screen

As the Productivity Report will open in your spreadsheet, Fill in the "Assigned personnel" and the "Actual
Development Time" fields, the report will immediately update to show your development team productivity at
the bottom line. If your team productivity is below %100, your development process may be less efficient than
the average, or project specifications may need refining (see tips on How To Improve Developer Productivity).

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
file:///C:/Dev/ProjectPricingVS2005/Help/UI_selectfolder.htm

ProjectCodeMeter

Estimating a Future project schedule and cost for producing a price quote

Whether being a part of a software company or an individual freelancer, when accepting a
development contract from a client, you need to produce a price tag that would beat the price quote given by
your competitors, while remaining above the margin of development costs. The desired cost estimation is the
cost of that implementation by an average programmer, as this is the closest estimation to the price quote your
competitors are offering. Make sure the quote is high enough to leave you some profit above your Internal
Budget Plan.

Step by step instructions:
 1. Create a project folder with a collection of files with similar functionality needed in your future project.
Usually take files from older projects of yours, or downloaded Open Source projects from one of the open
source repository websites. Note the code DOESN'T need to be compilable, so no need to fix any errors or
create an actual IDE project or build scripts, nor adding any auto generated files, and files which functionality
is covered by code libraries you already have.
 2. Make sure you don't have any open ProjectCodeMeter report files in your spreadsheet or browser, as it
prevents these files from being updated.
 3. Select this folder into the Project Folder textbox (make sure NOT to select "Differential comparison")
 4. Select the Settings describing the project. Select the best Debugging Tools settings available for the
platform (usually "Complete system emulator") since your competitors are using these which cuts their
development effort thus affording a lower price quote. Select the Quality Guarantee and Platform Maturity for
your future project. The Price Per Hour should be the market average hourly rate of a programmer with skills
for that kind of task.
 5. Click the "Analyze" button. When analysis finishes, Time and Cost results will be shown at the bottom right
summary screen

Use the Project Time and Cost results as the Development component of the price quote (chart above in red) ,
add the market average costs of the other relevant components shown in the diagram above. Add the nominal
profit percentage suitable for the target market. The resulting price should be the top margin for the price quote
you produce to your clients. For calculating the bottom margin for the price quote, use the process Estimating a
Future project schedule and cost for internal budget planning.

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
file:///C:/Dev/ProjectPricingVS2005/Help/UI_selectfolder.htm

ProjectCodeMeter

Monitoring an Ongoing project development team productivity

This process enables actively monitoring the progress of software development, by adding up multiple analysis
measurement results (called milestones). It is done by comparing the previous version of the project to the
current one, accumulating the time and cost delta (difference) between the two versions.
Only when the software is in this mode, each analysis will be added to the History Report, and an auto-backup
of the source files will be saved into the ".Previous" sub-folder of your project folder.
The process is a variant of Cumulative Differential Analysis which allows to more accurately measure
software projects, including those developed using Agile lifecycle methodologies.
It is suitable for measuring productivity of both single programmers and development teams.

Step by step instructions:
 1. Make sure you don't have any open ProjectCodeMeter report files in your spreadsheet or browser, as these
files will be updated. If you want to start a new history tracking, simply rename or delete the old History
Report file.
 2. Put on your local disk a folder with the most current project source version (excluding any auto generated
files, files created by 3rd party, files taken from previous projects) if you already have such folder from former
analysis milestone, then use it instead and copy the latest version of the source files over it.
 3. Select this folder into the Project Folder textbox
 4. Click the Differential Comparison checkbox to enable checking only revision differences
 5. Clear the Old Version Folder textbox, so that the analysis will be made against the auto-backup version, and
an auto-backup will be created after the first milestone (ProjectCodeMeter will automatically fill in this
textbox later with the auto-backup folder)
 6. Optionally, set the "When analysis ends:" option to "Open Differential History Report" as the History
Report is the most relevant in this process
 7. Select the Settings describing the current version of the project (you should usually ask your developer for
the Quality Guarantee setting, and).
 8. Click "Analyze", when the analysis process finishes the results for this milestone will be shown at the
bottom right summary screen, While results for the overall project history will be written to the History Report
file, which should now open automatically.
 9. On the first analysis, Change the date of the first milestone in the table (the one with all 0 values) to the date
the development started, so that Project Span will be correctly measured (in the History Report file).
10. If the source code analyzed is a skeleton taken from previous projects or a third party, and should not be
included in the effort history, simply delete the current milestone row (last row on the table).
11. Fill in the number of developers who worked simultaneously on this milestone. For example, if the
previous milestone was checked last week and was made by 1 developer, and at the beginning of this week you
hired another developer, and both of them worked at developing the source code for the this weeks milestone,
then enter 2 in this milestones "Developers" column (the previous milestone will still have 1 in its
"Developers" column)
12. Optionally, if you know the actual time it took to develop this project revision from the previous version
milestone, you can input the number (in hours) in the Actual Time column at the end of the milestone row, this
will allow you to see the Average Actual Productivity of your development team (indicated in that report)
which can give you a more accurate and customizable productivity rating than Average Span Productivity.

The best practice is to analyze the projects source code weekly.
Each milestone has its own Span Productivity (and if available, also Actual Productivity), these show how
well your development team performs comparing to the APPW statistical model of an average development
team. As your team is probably faster or slower than average, it is recommended you gather at least 4 weekly
milestones before deriving any conclusions. For monitoring and detecting productivity drops (or increases),
look at the Span Prod. Delta (and if available, also Actual Prod. Delta) to see changes (delta) in productivity
for this milestone. A positive value means increase in productivity, while negative values indicate a drop. It is
recommended to look into the reasons behind significant increases (above 5) or drops (below -5),

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
file:///C:/Dev/ProjectPricingVS2005/Help/UI_selectfolder.htm

which development productivity improvement steps to take.

Look at the Average Span Productivity (or if available the Average Actual Productivity) percentage of the
History Report to see how well your development team performs comparing to the APPW statistical model of
an average development team. A value of 100 indicated that the development team productivity is exactly as
expected (according to the source code produced during the project duration), As higher values indicate higher
productivity than average. In case the value drops significantly and steadily below 100, the development
process is less efficient than the average, so it is recommended to see Productivity improvement tips.

ProjectCodeMeter

Estimating the Maintainability of a Software Project

The difficulty in maintaining a software project is a direct result of its overall size (effort and development
time), code style and qualities.

Step by step instructions:
 1. Using Windows explorer, Identify files to be evaluated, usually only files created for this project (excluding
 files auto-generated by the development tools, data files, and files maintained by a third party)
 2. Copy these files to a separate new folder
 3. Select this folder into Project Folder
 4. Select the Settings describing the project
 5. Optionally set the "When analysis ends" action to "Open Quality report" as this report is the most relevant
for this task
 6. Click "Analyze"
When analysis finishes, the total time (Programming Hours) as well as Code Quality Notes Count will be at the
bottom right summary screen.
The individual quality notes will be at the rightmost column of each file in the file list.
The Quality Report file contains that information as well.
As expected, the bigger the project in Programing Time and the more Quality Notes it has, the harder it will be
to maintain.

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
file:///C:/Dev/ProjectPricingVS2005/Help/UI_selectfolder.htm

ProjectCodeMeter

Evaluating the attractiveness of an outsourcing price quote

In order to calculate how cost-effective is a price quote received from an external outsourcing contractor, Price
boundaries need to be calculated:
Top Margin - by using the method for Estimating a price quote and schedule for a Future project
Outsource Margin - by using the method for Estimating a Future project schedule and cost for internal budget
planning

Use the Top Margin to determine the maximum price you should pay, if the price quote is higher it is wise to
consider a price quote from another contractor, or develop in-house.

Use the Outsource Margin to determine the price where outsourcing is more cost-effective than developing in-
house, though obviously cost is not the only merit to be considered when developing in-house.

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com

ProjectCodeMeter

Measuring an Existing project cost for producing a price quote

When selling an existing source code, you need to produce a price tag for it that would match the price quote
given by your competitors, while remaining above the margin of development costs.

Step by step instructions:
 1. Make sure you don't have any open ProjectCodeMeter report files in your spreadsheet or browser, as these
files will be updated
 2. Using Windows explorer, Identify files to be estimated, usually only files created for this project (excluding
 files auto-generated by the development tools, data files, and files provided by a third party)
 3. Copy these files to a separate new folder
 4. Select this folder into the Project Folder textbox
 5. Select the Settings describing the project (make sure not to select "Differential comparison"), and the real
Price Per Hour paid to you development team.
 6. Click the "Analyze" button. When analysis finishes, Time and Cost results will be shown at the bottom right
summary screen

Use the Project Time and Cost results as the Development component of the price quote, add the market
average costs of the other relevant components shown in the diagram above. Add the minimal profit percentage
suitable for the target market. The resulting price should be the top margin for the price quote you produce to
your clients (to be competitive). For calculating the bottom margin for the price quote, use the actual cost, plus
the minimal profit percentage making the sale worthwhile (to stay profitable). In case the bottom margin is
higher than the top margin, your development process is less efficient than the average, so it is recommended to
reassign personnel to other roles, change development methodology, or gain experience and training for your
team.

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
file:///C:/Dev/ProjectPricingVS2005/Help/UI_selectfolder.htm

ProjectCodeMeter

Steps for Sizing an Existing Project

This process enables measuring programming cost and time invested in an existing software project according
to the WMFP algorithm. This process is useful in assessing the effort (work hours) of a single developer or a
development team (either in-house or outsourced). Note that development processes exhibiting high amount of
design change require accumulating differential analysis results, Refer to compatibility notes for using Agile
development processes with the APPW statistical model. For measuring only the difference from the last
version use the Differential Project Sizing process.

Step by step instructions:
 1. Make sure you don't have any open ProjectCodeMeter report files in your spreadsheet or browser, as they
prevent files from being updated
 2. Using Windows explorer, Identify files to be estimated, usually only files created for this project (excluding
 files auto-generated by the development tools, data files, and files provided by a third party)
 3. Copy these files to a separate new folder
 4. Select this folder into the Project Folder textbox
 5. Select the Settings describing the project (make sure not to select "Differential comparison").
 6. Click the "Analyze" button. When analysis finishes, Time and Cost results will be shown at the bottom right
summary screen

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
file:///C:/Dev/ProjectPricingVS2005/Help/UI_selectfolder.htm

ProjectCodeMeter

Analysis Results Charts

Charts visualize the data which already exists in the Summary and Report Files. They are only displayed when
the analysis process finishes and valid results for the entire project have been obtained. Stopping the analysis
prematurely will prevent showing the charts and summary.

Minute Bar Graph
Shows the measured WMFP metrics for the entire project. Useful for visualizing the amount of time spent by the
developer on each metric type. Result are shown in whole minutes, with optional added single letter suffix: K
for thousands, M for Millions. Note that large numbers are rounded when M or K suffixed.

In the example image above, the Ttl (Total Project Development Time in minutes) indicates 9K, meaning 9000-
9999 minutes. The DT (Data Transfer Development Time) indicates 490, meaning 490 minutes were spent on
developing Data Transfer code.

Percentage Pie Chart
Shows the measured WMFP metrics for the entire project. Useful for visualizing the development time and cost
distribution according to each metric type, as well as give an indication to the nature of the project by noticing
the dominant metric percentages, as more mathematically oriented (AI), decision oriented (FC) or data I/O
oriented (DT and OV).

In the example image above, the OV (dark blue) is very high, DT (light green) is nominal, FC (orange) is
typically low, while AI (yellow) is not indicated since it is below 1%. This indicates the project nature to be
Data oriented, with relatively low complexity.

Component Percentage Bar Graph
Shows the development effort percentage for each component relatively to the entire project, as computed by
the APPW model. Useful for visualizing the development time and cost distribution according to the 3 major
development components: Coding, Debugging, and Testing.

In the example image above, the major part of the development time and cost was spent on Coding (61%).

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com

ProjectCodeMeter

Project Files List

Shows a list of all source code files detected as belonging to the project. As analysis progresses, time and
metric results about each file will be added to the list, each file has its details on the same horizontal row as the
file name. Percentage values are given in percents relative to the file in question (not the whole project). The
metrics are given according to the WMFP metric elements, as well as Quality and Quantitative metrics, and
Quality / Maintainability warnings.
In Differential modes, the file icon will change during the scan to indicate whether the file is New, Modified,
or Deleted.

Tips:

You can double-click a file to see measurements summary for that file, or right-click a file to do some
operations on it, like editing it, open the containing folder and more.

If you need to sort the files list, open one of the CSV or HTML reports in a spreadsheet application, the easiest
way to open the Quality report in Excel is clicking the excel icon at the bottom-right corner of the list.

Measurements:
Total Time - Shows the calculated programmer time it took to develop that file (including coding, debugging
and testing), shown both in minutes and in hours independently.
Coding - Shows the calculated programmer time spent on coding alone on that file, shown both in minutes and
in percentage of total file development time.
Debugging - Shows the calculated programmer time spent on debugging alone on that file, shown both in
minutes and in percentage of total file development time.
Testing - Shows the calculated programmer time spent on testing alone on that file, shown both in minutes and
in percentage of total file development time.
Flow Complexity, Object Vocabulary, Object Conjuration, Arithmetic, Data Transfer, Code Structure, Inline
Data, Comments - Shows the correlating WMFP source code metric measured for that file, shown both in
minutes and in percentage of total file development time.
CCR, ECF, CSM, LD, SDE, IDF, OCF - Shows the correlating calculated Code Quality Metrics for that file,
shown in absolute value.
SLOC, LLOC, Cyclomatic Complexity, Strings, Comments, Numeric Constants - Shows the counted
Quantitative Metrics for that file, shown in absolute value.
Quality Notes - Shows warnings on problematic source code qualities and attributes.

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
file:///C:/Dev/ProjectPricingVS2005/Help/FN_results.htm

ProjectCodeMeter

Project selection settings

Project Folder
Enter the folder (directory) on you local disk where the project source code resides.

1. Clicking it will open the folder in File Explorer
2. Textbox where you can type or paste the folder path
3. Clicking it will open the folder selection dialog that will allow you to browse for the folder, instead of
typing it in the textbox.
It is recommended not to use the original folder used for development, rather a copy of the original folder,
where you can remove files that should not be measured:
Auto-generated files - source and data files created by the development environment (IDE) or other automated
tools, These are usually irrelevant since the effort in producing them is very low, yet they have large intrinsic
functionality.
Files developed by 3rd party - source and data files taken from a purchased commercial off-the-shelf product,
These are usually irrelevant since the price paid for standard product commercial library is significantly lower.
Files copied from previous projects - Reused source code and library files, These are usually irrelevant since
they are either not delivered to the client in source form, or not sold exclusively to one client, therefore they are
priced significantly lower.
Unit Test files - Testing code is mostly auto-generated and trivial, and is already factored for and included in
the results. Complex testing code such as simulators and emulation layers should be treated as a separate
project and analyzed separately, using Beta quality settings.

Tip: You can right-click a folder in Windows File Explorer and choose "Analyze with ProjectCodeMeter" to
run ProjectCodeMeter with that folder already selected as the project folder.

Differential comparison
Enabling this checkbox turns on the Differential Analysis Mode which will allow you to specify an Old
Version Folder, and analyze only the differences between the old version and the current one (selected in the
Project Folder above). Unchecking this box will use the default Normal Analysis Mode.

Old Version Folder
Enter the folder (directory) on you local disk where an older version of the source code resides. This allows
you to analyze only the differences between the old version and the current one (selected in the Project Folder
above).
This folder often used to designate:
Source code starting point (skeleton or code template) - this will exclude the effort of creating the code starting
point, which is often auto-generated or copied.
Source files of any previous version of the project - Useful in order to get the delta (change) effort from the
previous version to the current.
The auto-backup previous version of the project - You can leave this box empty in order to analyze differences
between the auto-backup version and the current one, a practice useful for Differential Cumulative Analysis.

When analysis ends
You can select the action that will be taken when the source code analysis finishes. This allows you to
automatically open one of the generated analysis reports, every time the analysis process is finished. To
make ProjectCodeMeter automatically exit, select "Exit application" (useful for batch operation). To prevent
this behavior simply select the first option from the list "Just show summary and charts". Note that all reports

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
file:///C:/Dev/ProjectPricingVS2005/Help/UI_selectfolder.htm
file:///C:/Dev/ProjectPricingVS2005/Help/UI_selectfolder.htm

are generated and saved, regardless of this setting. You can always browse the folder containing the generated
reports by clicking the "Reports" button, where you can open any of the reports or delete them.

ProjectCodeMeter

Settings

Price per Hour
This value should correlate with the task you are using ProjectCodeMeter for, in most cases you'll want to enter
the gross average hourly rate of a programmer with skills for this type of project when you use
ProjectCodeMeter to calculate the expected gross cost it takes for an average programmer to create this
project. Likewise, enter the cost of your programmer to estimate the cost it should take your team to create this
project if he/she works at the market average speed. As another example, if you enter the net minimum cost of a
development hour, you will get the net minimum cost of the project if done by an average developer.
For specific tasks see the Quick Function Overview section of the main page. If your developers have several
pay grades, Then enter their average hourly rate when measuring their combined source code.
You can enter any integer number for the cost along with any formatting you wish for representing currency. As
an example, all these are valid inputs: 200, $50, 70 USD, 3200Cents, 4000 Yen.
However integer number format must contain digits ONLY without delimiters, for example these are invalid:
1,000 or 24.5
If you need fractures, use a sub-currency instead.

Quality Guarantee
The product quality guaranteed by the programmers' contract. The amount of quality assurance (QA) testing
which was done on the project determines its failure rate. There is no effective way to determine the amount of
testing done, except for the programmers guarantee. QA can be done in several methods (Unit Testing, UI
Automation, Manual Checklist), under several Lifecycle methodologies where quality levels are marked
differently for each.
Quality levels stated in Sigma are according to the standard Process Fallout model, as measured in long term
Defects Per Million:
1-Sigma 691,462 Defects / Million
2-Sigma 308,538 Defects / Million
3-Sigma 66,807 Defects / Million
4-Sigma 6,210 Defects / Million
5-Sigma 233 Defects / Million
6-Sigma 3.4 Defects / Million
7-Sigma 0.019 Defects / Million
Common version names are also provided for simplicity, meaning:
Alpha POC - A quick and dirty Proof Of Concept version, with partial or "happy path" functionality, no error
checking, may have passed some functionality alpha testing for a specific scenario.
Beta - A basic functionality version, ready to be tested by a select non-developer user/QA group. rudimentary
error checking, passed functionality black-box tests, and some unit tests.
Pre-Release RC - A fully functional Release Candidate for a 1st version ready to be tested by clients, with full
error checking, passed all functionality black-box tests and beta tests, and all unit tests.
First Release - A fully functional version for public distribution, with error checking. Passed unit testing, static
analysis, basic runtime analysis. Passed client acceptance test.
Stable Release - Passed several release cycles for bug fixes according to initial user feedback.
Mass Production - Ready to be used by hundreds of thousands of users where failures will cause expensive
feedback and fixing. Extensively used and mature version, used by tens of users for a several month period, had
tens of fixes and feedback.
Mission Critical - Ready to be used on important projects where failures shouldn't occur. All possible errors
are handled gracefully, all input checked. Extensively used and tested in all scenarios, passed Accelerated
Lifecycle Tests, and extensive %100 coverage runtime tests.
Life Critical - Ready to be used for life supporting missions, where errors cost lives. All possible errors are
handled gracefully, all input checked. Passed all possible functionality, unit, static, runtime, and security red
team tests.

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com

Platform Maturity
The quality of the underlying system platform, measured in average stability and support for all the platform
parts, including the Function library API, Operating System, Hardware, and Development Tools.
You should select "Popular Stable and Documented" for standard architectures like:
Intel and AMD PCs, ARM, Windows official release, Sun/Oracle Java VM, Sun J2ME KVM, Windows
Mobile, C runtime library, Apache server, Microsoft IIS, Popular Linux distros (Ubuntu, RedHat/Fedora,
 Mandriva, Puppy, DSL), Flash.
Here is a more detailed platform list.

Debugging Tools
The type of debugging tools available to the programmer. Tools are listed in descending efficiency (each tool
has the capabilities of all lower ranked tools). For projects which don't use any external or non-standard
hardware or network setup, and a Source Step Debugger is available, You should select "Complete System
Emulator / VM" since in this case the external platform state is irrelevant thus making a Step Debugger and an
Emulator equally useful.
Emulators, Simulators and Virtual Machines (VMs) are top of the line debugging tools, allowing the
programmer to simulate the entire system including the hardware, stop at any given point and examine the
internals and status of the system. They are synchronized with the source step debugger to stop at the same time
the debugger does, allowing to step through the source code and the platform state.
A "Complete System Emulator" allows to pause and examine every hardware component which interacts with
the project, while a "Main Core Emulator" only allows this for the major components (CPU, Display, RAM,
Storage, Clock).
Source Step Debuggers allow the programmer to step through each line of the code, pausing and examining
internal code variables, but only very few or none of the external platform states.
Binary Step Debuggers allow stepping through machine instructions (disassembly) and examining data and
execution state, but don't show the original source code.
Debug Text Log is used to write a line of text selected by the programmer to a file, whether directly or through
a supporting hardware/software tool (such as a protocol analyzer or a serial terminal).
Led or Beep Indication is a last resort debugging tool sometimes used by embedded programmers, usually on
experimental systems when supporting tools are not yet available, on reverse engineering unfamiliar hardware,
or when advanced tools are too expensive.

More..
Some advanced settings can be changed from the Advanced Configuration menu (click the "More.." button, then
"Advanced Configuration...").

file:///C:/Dev/ProjectPricingVS2005/Help/UI_advanced_configuration.htm

ProjectCodeMeter

Common software and hardware platforms:

The quality of the underlying system platform, measured in average stability and support for all the platform
parts, including the Function library API, Operating System, Hardware, and Development Tools.
For convenience, here is a list of common platform parts and their ratings, as estimated at the time of
publication of this article (Jan 2019).

Hardware:

Part Name Popularity Stability Documentation
Level

PC Architecture (x86
compatible) Popular Stable Well

documented

CPU x86 compatible
(IA32, A64, MMX, SSE,
SSE2)

Popular Stable Well
documented

CPU AMD 3DNow Popular Stable Well
documented

CPU ARM core Popular Stable Well
documented

Altera FPGA Stable Well
documented

Xilinx FPGA Stable Well
documented

Atmel AVR Popular Stable Well
documented

MCU Microchip PIC Popular Stable Well
documented

MCU x51 compatible
(8051, 8052) Popular Stable Well

documented

MCU Motorola Wireless
Modules (G24) Stable Well

documented

MCU Telit Wireless
Modules (GE862/4/5) Stable Well

documented

USB bus Popular Functional Mostly
documented

PCI bus Popular Stable Mostly
documented

Serial bus (RS232,
RS485, TTL) Popular Stable Well

documented

I2C bus Stable Mostly
documented

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com

Operating Systems and layers:

Part Name Popularity Stability Documentation
Level

Microsoft Windows
2000, 2003, XP, ES,
PE, Vista, Seven, 8, 10

Popular Stable Well documented

Microsoft Windows
3.11, 95, 98,
98SE, Millenium, NT3,
NT4

Functional Mostly
documented

Linux (major distros:
Ubuntu, RedHat/Fedora,
 Mandriva, Puppy, DSL,
Slax, Suse)

Popular Stable Well documented

Linux (distros: Gentoo,
CentOS) Stable Well documented

Linux (distros: uCLinux,
PocketLinux, RouterOS) Functional Well documented

Windows CE,
Handheld, Smartphone,
Mobile,

Functional Mostly
documented

MacOSX Stable Well documented

ReactOS Experimental Well documented

PSOS Stable Mostly
documented

VMX Stable Mostly
documented

Solaris Stable Well documented

Symbian Stable Mostly
documented

Ericsson Mobile
Platform Stable Mostly

documented

Apple iPhone iOS Popular Stable Well documented

Android SDK Popular Stable Well documented

Android NDK Popular Stable Well documented

Runtime Environment / Function library / API:

Part Name Popularity Stability Documentation
Level

Oracle/Sun Java SE,
EE Popular Stable

Well
documented

Oracle/Sun Java ME
(CLDC, CDC, MIDP) Popular Stable Well

documented

C runtime library Popular Stable Well
documented

Apache server Popular Stable Well
documented

Microsoft IIS Popular Stable Well
documented

Flash Stable Mostly
documented

UnrealEngine Stable Mostly
documented

Microsoft .NET Popular Stable Well
documented

Mono Functional Well
documented

Gecko / SpiderMonkey
(Mozilla, Firefox,
SeaMonkey, K-Meleon,
Aurora, Midori)

Popular Stable Well
documented

Microsoft Internet
Explorer Popular Stable Well

documented

Apple WebKit (Safari) Popular Stable Well
documented

Chrome Popular Stable Well
documented

ProjectCodeMeter

Summary

Shows a textual summary of measurements for the entire project. Percentage values are given in percents
relative to the whole project. The main results and metrics are given according to the WMFP cost model and
metric elements, Quality indexes and warnings, as well as Quantitative metrics. In Normal Analysis, results
show the entire project measurement, while in Differential mode, the results measure only the difference from
the old version. For comparison purposes, measured COCOMO and REVIC results are also shown, Please note
the Differences Between COCOMO and WMFP results.
Optionally, if a code words list was extracted (settable in Advanced Configuration) then the top 5 most
recurring code words will be listed.

You can compare the Total Time result with the actual time it took your team to develop the project. In case the
actual time is higher than the calculated time results, your development process is less efficient than the
average. However, it's easier to use the Productivity Report to get your developer productivity.

Tip: Clicking the title opens the project summary in a new window

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
file:///C:/Dev/ProjectPricingVS2005/Help/FN_results.htm
file:///C:/Dev/ProjectPricingVS2005/Help/UI_advanced_configuration.htm

ProjectCodeMeter

Toolbar

The toolbar buttons on the top right of the application, provide the following actions:

Reports
This button allows you to browse the folder containing the generated reports using Windows File Explorer,
where you can open any of the reports or delete them. This button is only available after the analysis has
finished, and the reports have been generated.

Save Settings
This allows you to save all the settings of ProjectCodeMeter, which you can load later using the Load Settings
button, or the command line parameters.

Load Settings
This allows loading a previously saved setting.

Help
Brings up this help window, showing the main index. To see context relevant help for a specific screen area,
click the icon in the application screen near that area.

Basic UI / Full UI
This button switches between Basic and Full User Interface. In effect, the Basic UI hides the result area of the
screen, until it is needed (when analysis finishes).

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
http://www.projectcodemeter.com

ProjectCodeMeter

Reports

When analysis finishes, several report files are created in the project folder under the newly generated sub-
folder ".PCMReports" which can be easily accessed by clicking the "Reports" button (on the top
right).Alternatively, a quick way to open the Quality report in Excel is clicking the excel icon at the bottom-
right corner of the file list.

Most reports are available in 2 flavors: HTM and CSV files.
HTM files are in the same format as web pages (HTML) and can be read by any Internet browser (such as
Internet Explorer, Firefox, Chrome, Opera), but can also be read by most spreadsheet applications (such as
Microsoft Excel, Gnumeric, LibreOffice Calc) which is preferable since some reports contain spreadsheet
formulas, colors and alignment of the data fields. NOTE: only Microsoft Excel supports updating HTML report
files correctly.
CSV files are in simplified and standard format which can be read by any spreadsheet application (such as
Spread32, Office Mobile, Microsoft Excel, LibreOffice Calc, OpenOffice Calc, Gnumeric) however this file
type does not support colors, and some spreadsheets do not show or save formulas correctly.

Tips:

Reports under the folder "Overwritten" are indeed overwritten on each analysis, so remember to copy them
outside the project folder before editing or running another analysis.
In contrast, reports under the "Appended" folder are just added new data on each analysis, leaving intact any
modifications you made. (for more detail see the "Report Template Engine" section below)

Printing the HTML report can be done in your spreadsheet application or browser. Firefox has better image
quality, but Internet Explorer shows data aligned and positioned better.

If you're upgrading from an older ProjectCodeMeter version by installing the new version over the old, the new
version reports WON'T be used since you may have made modification to the report templates and want to
preserve them. In order to use the new reports, select the menu option "Reset Templates Folder.." but be careful
since this will delete any changes you made to the templates (so backup your modified templates if you need
them).

Summary Report
This report summarizes the WMFP, Quality and Quantitative results for the entire project as measured by the
last analysis. It is used for overviewing the project measurement results and is the most frequently used report.
This report file is generated and overwritten every time you complete an analysis. The file names for this report
are distinguished by ending with the word "_Summary".

Time Report
This report shows per file result details, as measured by the last analysis. It is used for inspecting detailed time
measurements for several aspects of the source code development. Each file has its details on the same
horizontal row as the file name, where measurement values are given in minutes relevant to the file in question,
and the property (metric) relevant to that column. The bottom line shows the Total sums for the whole
project. This report file is generated and overwritten every time you complete an analysis. The file names for
this report are distinguished by ending with the word "_Time".

Quality Report
This report shows per file Quality result details, as measured by the last analysis. It is used for inspecting
some quality properties of the source code as well as getting warnings and tips for quality improvements (on
the last column). Each file has its details on the same horizontal row as the file name, where measurement

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
http://www.projectcodemeter.com

values marked with % are given in percents relative to the file in question (not the whole project), other
measurements are given in absolute value for the specific file. The bottom line shows the Total sums for
the whole project. This report file is generated and overwritten every time you complete an analysis. The file
names for this report are distinguished by ending with the word "_Quality".

Metrics Report
This report shows metric counts for files and/or entire project. It includes counts like Lines of Code,
Cyclomatic count, and number of strings, which can be used to asses the size of the code, and as parameters in
your own custom cost algorithm.
The file names for this report are distinguished by ending with the word "_Metrics".

Reference Model Report
This report shows calculated traditional Cost Models for the entire project as measured by the last analysis. It
is used for reference and algorithm comparison purposes. Includes values for COCOMO, COCOMO II 2000,
and REVIC 9.2. The Nominal and Basic values are for a typical standard project, while the Intermediate values
are influenced by metrics automatically measured for the project. This report file is generated and overwritten
every time you complete an analysis. The file names for this report are distinguished by ending with the word
"_Reference".

Productivity Report
This report is used for calculating your Development Team Productivity comparing to the average statistical
data of the APPW model. You need to open it in a spreadsheet program such as Gnumeric or Microsoft Excel,
and enter the Actual Development Time it took your team to develop this code - the resulting Productivity
percentage will automatically be calculated and shown at the bottom of the report. In case the value drops
significantly and steadily below 100, the development process is less efficient than the average, so it is
recommended to see Development productivity improvement tips. This report file is generated and overwritten
every time you complete an analysis. The file names for this report are distinguished by ending with the word
"_Productivity".

Differential Analysis History Report
This report shows history of analysis results. It is used for inspecting development progress over multiple
analysis cases (milestones) when using Cumulative Differential Analysis. Each milestone has its own row
containing the date it was performed and its analysis result details. Measurements are given in absolute value
for the specific milestone (time is in hours unless otherwise noted). The first milestone indicates the project
starting point, so all its measurement values are set to 0, it is usually required to manually change its date to the
actual projects starting date in order for the Project Span calculations to be effective. It is recommended to
analyze a new sourcecode milestone at every specification or architectural redesign, but not more than once a
week as statistical models have higher deviation with smaller datasets. This report file is created once on the
first Cumulative Differential Analysis and is updated every time you complete a Cumulative Differential
Analysis thereafter. The file names for this report are distinguished by ending with the word "_History".
The summary at the top shows the Totals sum for the whole history of the project:
Work hours per Month (Yearly Average) - Input the net monthly work hours customary in your area or market,
adjusted for holidays (152 for USA). This field is editable.
Total Expected Project Hours - The total sum of the development hours for all milestones calculated by
ProjectCodeMeter. This indicates how long the entire project history should take.
Total Expected Project Cost - The total sum of the development cost for all milestones calculated by
ProjectCodeMeter. This indicates how much the entire project history should cost.
Total Modified Logical Lines of Code (LLOC) - The total number of logical source code lines changed during
the entire project history.
Average Cost Per Hour - The calculated average pay per hour across the project milestone history. Useful if the
programmers pay has changed over the course of the project, and you need to get the average hourly rate.
Analysis Milestones - The count of analysis cases (rows) in the bottom table.
Project Span Days - The count of days passed from the first milestone to the last, according to the milestone
dates. Useful for seeing the gross sum of actual days that passed from the projects' beginning.
Project Span Hours - The net work hours passed from the projects beginning, according to the yearly average
working hours.

Average Project Span Productivity % - Your development team productivity compared to the statistical
average based on the balance between the WMFP expected development time and the project span, shown in
percents. Value of 100 indicated that the development team productivity is exactly as expected according to the
source code produced during project duration, As higher values indicate higher productivity than average. Note
that holidays (and other out of work days) may adversely affect this index in the short term, but will even out in
the long run. Also note that this index is only valid when analyzing each milestone using the most current source
code revision.
Total Actual Development Hours - The total sum of the development hours for all milestones, as was entered
for each milestone into this report by the user (on the Actual Time column). The best practice is to analyze the
projects source code weekly, if you do so the value you need to enter into the Actual Time column is the
number of work hours in your organization that week. Note that if you have not manually updated the Actual
Time column for the individual milestones, this will result in a value of 0.
Average Actual Productivity % - Your development team productivity compared to the statistical average
based on the balance between the WMFP expected development time and the Actual Time entered by the user,
shown in percents. Value of 100 indicated that the development team productivity is exactly as expected
(according to the source code produced during project duration), As higher values indicate higher productivity
than average. Note that holidays (and other out of work days) may adversely affect this index in the short term,
but will even out in the long run. Also note that this index is only valid if the user manually updated the Actual
Time column for the individual milestones, and when analyzing each milestone using the most current source
code revision.

Microsoft Project Tasks Report
This reports is compatible with project management software Microsoft Project and ProjectLibre, it lists the
source files as tasks with their respective estimated development duration, so you can organize and link them
into a complete project plan.
The file names for this report are distinguished by ending with the words "MSProject_Tasks"

String Translation Report
This reports helps evaluating costs of spoken language translation of the hard-coded strings in a program. It
allows accounting for the amount of words in strings, and difficulty of the language, to determine the time and
cost of the job. You will need to edit it in Excel, and set your "Time per Word", "Cost per Second" and "Setup
Costs", to get the result that fits your skills and price tag.
The file names for this report are distinguished by ending with the words "String_Translation_Cost"

Report Engine Templates
All reports are generated from template files residing in the Templates folder, see this folder for examples.
This folder is created on ProjectCodeMeter's first run, under your Windows user folder (usually "My
Documents"). You can use the ProjectCodeMeter menu to easily open this folder.
You can edit existing report templates and create any custom ones. To create a report, create a files of any type
and just put it in the Templates folder. When ProjectCodeMeter finishes an analysis, it will copy your report
file to the analyzed project reports folder, and replace any macros inside it with the real values measured for
that analysis, see a list of Report Template Macros. You can use this custom report engine to create any type of
reports, in almost any file type, or even create your own cost model spreadsheet by generating an Excel HTML
report that calculates time and cost by taking the measured code metrics and using them in your own Excel
function formula (see the file ProjectCodeMeter_Productivity.xls as an example).
Note you'll have to put it in the appropriate subfolder that indicate how to process it:
There's a folder for each analysis mode (Normal, Differential, Cumulative) and a common folder (Common)
used in all modes. On each analysis, the only templates that will be processed are those in the folders relevant
for the current mode:
MODE PROCESSED FOLDERS
Normal Normal, Common
Differential Differential, Common
Cumulative Differential, Cumulative, Common

Under each of those folders there are folders for each processing method, Reports under the folder

http://www.projectlibre.com

"Overwritten" are indeed overwritten on each analysis,while reports under the "Appended" folder are just
added new data on each analysis, leaving intact previous data and any manual modifications you made.

ProjectCodeMeter creates many reports, one for each template file from the template folder. You may delete
templates of reports you don't need in order to speed up the generation: Use the menu option "Open Templates
Folder" and delete files from there. If you want to restore some of the files you deleted you can always copy the
originals from the ProjectCodeMeter install folder (usually under the "Program Files" folder by default), or in
case you want to return all templates to their original factory defaults you can use the "Reset Templates Folder"
menu option (which will lose any custom reports you changed/created).

Lists Reports
During analysis by default (see Advanced Configuration), or when a user clicks the file list menu command
"Extract Elements Lists", ProjectCodeMeter will generate source code element lists, currently strings and
code-words. The lists are in TSV (Tab Separated Values) file format, readable by Microsoft Excel, and any
text editor, even Notepad.

file:///C:/Dev/ProjectPricingVS2005/Help/UI_advanced_configuration.htm

ProjectCodeMeter

Report Template Macros

You can create any custom report using User Templates. To create a report, create a files of any type and put it
in the Templates folder. It is created on ProjectCodeMeter's first run, under your Windows user folder (usually
"My Documents"), use the ProjectCodeMeter menu to easily open this folder. When ProjectCodeMeter finishes
an analysis, it will take your report template file and replace any macros inside it with the real values measured
for that analysis.
Report Template Macros:
__SOFTWARE_VERSION__ ProjectCodeMeter version
__LICENSE_USER__ ProjectCodeMeter licensed user name
__PROJECT_FOLDER__ the Project Folder
__OLD_FOLDER__ the Old Version Folder
__REPORTS_FOLDER__ project Reports folder
__ANALYSIS_TYPE__ the analysis type Normal / Differential / Cumulative Differential
__PRICE_PER_HOUR__ programmer Price Per Hour
__PRICE_PER_HOUR_FORMATTED__ the currency unit decorated version of the programmer Price Per
Hour
__COST_UNITS__ only the currency unit decoration if any
__CURRENT_DATE_YYYYMMDD__ date at time of analysis in YYYY-MM-DD format
__CURRENT_TIME_HHMMSS__ time of analysis in HH:MM:SS format

For measurements macros, there are several conventions used in naming (all parts except OBJECT are
optional, and omitted if default or inapplicable):
__SCOPE_VER_PART_OBJECT_UNIT_FORMAT__ where:
SCOPE is either F which indicates for a file only (only available inside a multi-file section of the report
started by a marker like __ALLFILES_BEGIN__), or doesn't exists which indicates the result is in the scope of
the entire project.
VER is either OLD which indicates the result is for the Old Version project [Differential modes only], or
doesn't exist which indicates the current project version.
PART is which part of the code this result is for:

 NCHANGE

The Change part of the project (only code
that was added or changed). In Normal
mode this is the entire project cost, in
Differential modes this is only the
difference between old and new versions.

 GROWTH The time and cost results only for code that
increased in size and /or complexity.

 NEW The New code only part (code that was
added) [Differential modes only]

 MODIFIED The modified code only (code that was
edited) [Differential modes only]

 REFACTORED

The trivially refactored code (that was
usually edited using some automated code
manipulation tool) [Differential modes
only]

 DELETED
The code that was completely thrown
away (excluding any commented out
code). [Differential modes only]

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com

 SAME
Only within code that hasn't changed
between versions. [Differential modes
only]

 NTOTAL The Total of a project version (depending
on VER) ignoring the other version.

OBJECT is the name of what is measured (i.e LLOC for logical lines of code).
UNIT is the type of units of measurement for objects like time that can be represented in several units (i.e
MINUTES, HOURS, DAYS, RAW_HOURS), or doesn't exist if default or inapplicable.
FORMAT is how to decorate or order the result for objects like date that can be represented in several units
(i.e YYYYMMDD), or doesn't exist if default or inapplicable.

There are too many macros to list them all here, It's best to look at the report templates to see all the available
macros, and to see the report they produce after a scan.
Here are some examples of popular ones:

__NTOTAL_COST__ the total project cost (In Normal mode this is the entire project cost, in Differential
 modes this is only the difference between old and new versions)
__NTOTAL_COST_FORMATTED__ the currency unit decorated version of the Net total project cost
__NTOTAL_COST__
__OLD_NTOTAL_COST__ the net total cost of the Old Version of the project (only for Differential modes,
meaningless in Normal mode)
__F_OLD_NTOTAL_COST__ the net total cost of the Old Version of a specific file (not entire project),
(only for Differential modes, meaningless in Normal mode)
__F_NEW_TIME_MINUTES__ the development time result for only the new code in the current version of a
specific file (not entire project), in unit of minute.
__F_MODIFIED_TIME_MINUTES__ the development time result for only the modified code in the current
version of a specific file (not entire project), in unit of minute.
__F_SAME_TIME_HOURS__ the development time result for only the unmodified code in the current version
of a specific file (not entire project), in unit of hours.
__NCHANGE_COST__ the cost of the change part of the project (only code that was added or changed) , In
Normal mode this is the entire project cost, in Differential modes this is only the difference between old and
new versions.
__NTOTAL_TIME_HOURS__ the total project work time in hours
__NTOTAL_TIME_MINUTES__ the total project work time in minutes
__NTOTAL_TIME_RAW_HOURS__ the total project raw time (gross calendaric time) in hours
__NTOTAL_CODING_MINUTES__ the total project coding time in minutes
__NTOTAL_DEBUGGING_MINUTES__ the total project debugging time in minutes
__NTOTAL_TESTING_MINUTES__ the total project testing time in minutes
__NTOTAL_LLOC__ the project total Logical Source Lines Of Code (LLOC)
__NTOTAL_NUMERIC_CONSTANTS__ the project total Numeric Constants count
__NTOTAL_FILES__ the project total File Count
__NTOTAL_STRINGS__ the project total String Count
__NTOTAL_COMMENTS__ the project total source Comment count
__COCOMO_BASIC_MINUTES__ the reference Basic COCOMO estimated project time in minutes
__COCOMO_INTERMEDIATE_MINUTES__ the reference Intermediate COCOMO auto-estimated project
time in minutes
__COCOMO_INTERMEDIATE_RELY__ the reference Intermediate COCOMO auto-estimated RELY cost
driver
__COCOMO_INTERMEDIATE_CPLX__ the reference Intermediate COCOMO auto-estimated CPLX cost
driver
__COCOMO_INTERMEDIATE_TOOL__ the reference Intermediate COCOMO auto-estimated TOOL cost
driver
__COCOMO_INTERMEDIATE_PVOL__ the reference Intermediate COCOMO auto-estimated PVOL cost
driver
__COCOMOII2000_NOMINAL_MINUTES__ the reference COCOMO II 2000 nominal (normal) estimated

project time in minutes
__COCOMOII2000_INTERMEDIATE_MINUTES__ the reference Intermediate COCOMO II 2000
auto-estimated project time in minutes
__COCOMOII2000_INTERMEDIATE_RELY__ the reference Intermediate COCOMO II 2000 auto-estimated
RELY cost driver
__COCOMOII2000_INTERMEDIATE_CPLX__ the reference Intermediate COCOMO II 2000 auto-estimated
CPLX cost driver
__COCOMOII2000_INTERMEDIATE_TOOL__ the reference Intermediate COCOMO II 2000 auto-estimated
TOOL cost driver
__COCOMOII2000_INTERMEDIATE_PVOL__ the reference Intermediate COCOMO II 2000 auto-estimated
PVOL cost driver
__REVIC92_NOMINAL_DEVELOPMENT_MINUTES__ the reference Nominal Revic 9.2 Effort estimated
development time in minutes
__REVIC92_NOMINAL_REVIEW_MINUTES__ the reference Nominal Revic 9.2 Review Phase
estimated time in minutes
__REVIC92_NOMINAL_EVALUATION_MINUTES__ the reference Nominal Revic 9.2 Evaluation Phase
estimated time in minutes
__REVIC92_NOMINAL_TOTAL_MINUTES__ the reference Nominal Revic 9.2 Total estimated project time
in minutes
__REVIC92_DEVELOPMENT_MINUTES__ the reference Revic 9.2 Effort auto-estimated development time
in minutes
__REVIC92_REVIEW_MINUTES__ the reference Revic 9.2 Review Phase auto-estimated time in minutes
__REVIC92_EVALUATION_MINUTES__ the reference Revic 9.2 Evaluation Phase auto-estimated time in
minutes
__REVIC92_TOTAL_MINUTES__ the reference Revic 9.2 Total auto-estimated project time in minutes
__REVIC92_RELY__ the reference Revic 9.2 auto-estimated RELY cost driver
__REVIC92_CPLX__ the reference Revic 9.2 auto-estimated CPLX cost driver
__REVIC92_TOOL__ the reference Revic 9.2 auto-estimated TOOL cost driver
__TOTAL_QUALITY_NOTES__ count of quality notes and warnings for all files in the project
__CURRENT_DATE_MMDDYYYY__ todays date in MM/DD/YYYY format (compatible with Microsoft
Excel)
__CURRENT_DATE_YYYYMMDD__ todays date in YYYY-MM-DD format (compatible alphabet sorted
lists)
__CURRENT_TIME_HHMMSS__ the current time in HH:MM:SS format
__QUALITY_NOTES__ textual quality notes and warnings for the project (not for individual files)
__PLATFORM_MATURITY__ Platform Maturity settings text
__DEBUGGING_TOOLS__ Debugging Tools settings text
__QUALITY_GUARANTEE__ Quality Guarantee settings text
__PLATFORM_MATURITY_VALUE__ Platform Maturity settings as a number
__DEBUGGING_TOOLS_VALUE__ Debugging Tools settings as a number
__QUALITY_GUARANTEE_VALUE__ Quality Guarantee settings as a number
__NTOTAL_TIME_FC_MINUTES__ the total project time in minutes spent on Flow Complexity
__NTOTAL_TIME_OV_MINUTES__ the total project time in minutes spent on Object Vocabulary
__NTOTAL_TIME_OC_MINUTES__ the total project time in minutes spent on Object Conjuration
__NTOTAL_TIME_AI_MINUTES__ the total project time in minutes spent on Arithmetic Intricacy
__NTOTAL_TIME_DT_MINUTES__ the total project time in minutes spent on Data Transfer
__NTOTAL_TIME_CS_MINUTES__ the total project time in minutes spent on Code Structure
__NTOTAL_TIME_ID_MINUTES__ the total project time in minutes spent on Inline Data
__NTOTAL_TIME_CM_MINUTES__ the total project time in minutes spent on Comments
__NTOTAL_PERCENT_FC__ the percent of total project time spent on Flow Complexity
__NTOTAL_PERCENT_OV__ the percent of total project time spent on Object Vocabulary
__NTOTAL_PERCENT_OC__ the percent of total project time spent on Object Conjuration
__NTOTAL_PERCENT_AI__ the percent of total project time spent on Arithmetic Intricacy
__NTOTAL_PERCENT_DT__ the percent of total project time spent on Data Transfer
__NTOTAL_PERCENT_CS__ the percent of total project time spent on Code Structure
__NTOTAL_PERCENT_ID__ the percent of total project time spent on Inline Data

__NTOTAL_PERCENT_CM__ the percent of total project time spent on Comments

ProjectCodeMeter

Command line parameters and IDE integration
When launched, ProjectCodeMeter can optionally accept several command line parameters for automating
some tasks, such as a weekly scan of project files.
These commands can be used from any one of these places:
- Typed from the command prompt
- In a the "Target" of a shortcut properties
- A batch file (for example filename.bat)
- The Windows Start menu "Run" box
- The execution command of any software which supports external applications (such as the Tools menu of
Microsoft Visual Studio).

Parameters

/NOFLASH
Prevent ProjectCodeMeter from using Adobe Flash graphics, in case flash isn't installed or doesn't function
properly, this also speeds up loading a bit and uses less memory, but graphic charts will not be displayed.

/S:SettingsName
This command will load a setting called SettingsName. You should save a setting with that name before using
this command (by using the Save Settings toolbar button). Please state only the name, not the path nor extension.
Note that loading a setting will load all ProjectCodeMeter settings, including the Project Folder, and the When
analysis ends Action, for example, if the "When analysis ends" Action of "Exit application" was selected when
that settings was saved, ProjectCodeMeter automatically exit when done.

/A
Automatically start the Analysis process when ProjectCodeMeter launchs. Note that it will use the previous
Settings unless you also use the /S command described above.

/X
Makes ProjectCodeMeter automatically exit when the analysis process finishs. Note that this is independent of
any "When analysis ends" action loaded by the /S command described above (so you can use a settings that
opens a report in Excel, and still exits when finished).

/Q
Quiet mode, which won't popup any errors, rather write them to the log file "projectcodemeter_log.txt" in the
reports folder of that project

/H
Hides the main window, especially useful when called from a batch script. Please note it also auto adds these
options (so no need to explicitly add them): /X /Q /A /NOFLASH
Note that ProjectCodeMeter steals the keyboard focus for a split second when loaded, so if you want to work
on your PC while running it in a batch, it's best doing so in another virtual desktop or screen (Ctrl-Tab in
Windows 10)

/P:"folder"
Sets the current Project folder. Use a fully qualified path to the folder of the project you wish to analyze. Can
optionally use single quotes /P:'folder' in case of trouble.

/D

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com

This command will enable Differential comparison mode of analysis

/D:"folder"
This command will enable Differential comparison mode of analysis, and set the Old Version folder

Examples
The following examples assume you installed ProjectCodeMeter into C:\Program Files\ProjectCodeMeter , if
that's not the case, simply use the path you installed to instead.

A typical execution command can look like this:
"C:\Program Files\ProjectCodeMeter\ProjectCodeMeter.exe" /S:MyFirstProjectSetting
/P:"C:\MyProjects\MyApp" /A
This will load a setting called MyFirstProjectSetting, set the Project folder to C:\MyProjects\MyApp , and then
start the analysis.

Another example may be:
"C:\Program Files\ProjectCodeMeter\ProjectCodeMeter.exe" /P:"C:\MyProjects\MyApp"
/D:"C:\MyProjects\MyAppPrevious" /A
This will start a differential analysis between the project version in C:\MyProjects\MyApp and the older
version in C:\MyProjects\MyAppPrevious

Integration with Microsoft Visual Studio 6

Under the Tools - Customize... menu:

Manual analysis of the entire project:
Title: ProjectCodeMeter
Command: C:\Program Files\ProjectCodeMeter\ProjectCodeMeter.exe
Arguments: /P:"$(WkspDir)"
Initial Directory: C:\Program Files\ProjectCodeMeter
all optional checkboxes should be unchecked.

Automatic cumulative analysis milestone (differential from the last analysis):
Title: ProjectCodeMeter Cumulative Milestone
Command: C:\Program Files\ProjectCodeMeter\ProjectCodeMeter.exe
Arguments: /P:"$(WkspDir)" /D /A
Initial Directory: C:\Program Files\ProjectCodeMeter
all optional checkboxes should be unchecked.

Integration with Microsoft Visual Studio 2003 - 2010

Integration with Microsoft Visual Studio 2003 - 2010

Under the Tools - External Tools.. menu (you may need to first click Tools - Settings - Expert Settings):

Manual analysis of the entire project:
Title: ProjectCodeMeter
Command: C:\Program Files\ProjectCodeMeter\ProjectCodeMeter.exe
Arguments: /P:'$(SolutionDir)'
Initial Directory: C:\Program Files\ProjectCodeMeter
all optional checkboxes should be unchecked.

Automatic cumulative analysis milestone (differential from the last analysis):
Title: ProjectCodeMeter Cumulative Milestone
Command: C:\Program Files\ProjectCodeMeter\ProjectCodeMeter.exe
Arguments: /P:'$(SolutionDir)' /D /A
Initial Directory: C:\Program Files\ProjectCodeMeter
all optional checkboxes should be unchecked.

Integration with CodeBlocks

Under the Tools - Configure Tools.. - Add menu:

Manual analysis of the entire project:
Name: ProjectCodeMeter
Executable: C:\Program Files\ProjectCodeMeter\ProjectCodeMeter.exe
Parameters: /P:'${PROJECT_DIR}'
Working Directory: C:\Program Files\ProjectCodeMeter
Select Launch tool visible detached (without output redirection)

Automatic cumulative analysis milestone (differential from the last analysis):
Name: ProjectCodeMeter Cumulative Milestone
Executable: C:\Program Files\ProjectCodeMeter\ProjectCodeMeter.exe
Parameters: /P:'${PROJECT_DIR}' /D /A
Working Directory: C:\Program Files\ProjectCodeMeter
Select Launch tool visible detached (without output redirection)

Integration with Eclipse

Under the Run - External Tools.. - External Tools... - Program - New - Main menu:

Manual analysis of the entire project:
Name: ProjectCodeMeter
Location: C:\Program Files\ProjectCodeMeter\ProjectCodeMeter.exe
Arguments: /P:'${workspace_loc}'
Working Directory: C:\Program Files\ProjectCodeMeter
Display in Favorites: Yes

Automatic cumulative analysis milestone (differential from the last analysis):
Name: ProjectCodeMeter Cumulative Milestone
Location: C:\Program Files\ProjectCodeMeter\ProjectCodeMeter.exe
Arguments: /P:'${workspace_loc}' /D /A
Working Directory: C:\Program Files\ProjectCodeMeter
Display in Favorites: Yes

Integration with Aptana Studio

Under the Run - External Tools - External Tools Configurations... - Program - New - Main menu:

Manual analysis of the entire project:
Name: ProjectCodeMeter
Location: C:\Program Files\ProjectCodeMeter\ProjectCodeMeter.exe
Arguments: /P:'${workspace_loc}'
Working Directory: C:\Program Files\ProjectCodeMeter
Display in Favorites: Yes

Automatic cumulative analysis milestone (differential from the last analysis):
Name: ProjectCodeMeter Cumulative Milestone
Location: C:\Program Files\ProjectCodeMeter\ProjectCodeMeter.exe
Arguments: /P:'${workspace_loc}' /D /A
Working Directory: C:\Program Files\ProjectCodeMeter
Display in Favorites: Yes

Integration with Oracle JDeveloper

Under the Tools - External Tools.. - New - External Program - menu:

Manual analysis of the entire project:
Program Executable: C:\Program Files\ProjectCodeMeter\ProjectCodeMeter.exe
Arguments: /P:'${project.dir}'
Run Directory: "C:\Program Files\ProjectCodeMeter"
Caption: ProjectCodeMeter

Automatic cumulative analysis milestone (differential from the last analysis):
Program Executable: C:\Program Files\ProjectCodeMeter\ProjectCodeMeter.exe
Arguments: /P:'${project.dir}' /D /A
Run Directory: C:\Program Files\ProjectCodeMeter
Caption: ProjectCodeMeter Cumulative Milestone

Integration with JBuilder

Under the Tools - Configure Tools.. - Add menu:

Manual analysis of the entire project:
Title: ProjectCodeMeter
Program: C:\Program Files\ProjectCodeMeter\ProjectCodeMeter.exe
Parameters: /P:'($ProjectDir)'
Unselect Service checkbox, select the Save all checkbox

Automatic cumulative analysis milestone (differential from the last analysis):
Title: ProjectCodeMeter Cumulative Milestone
Program: C:\Program Files\ProjectCodeMeter\ProjectCodeMeter.exe
Parameters: /P:'($ProjectDir)' /D /A
Unselect Service checkbox, select the Save all checkbox

ProjectCodeMeter

Weighted Micro Function Points (WMFP)

WMFP is a modern software sizing algorithm invented by Logical Solutions in 2009 which is a successor to
solid ancestor scientific methods as COCOMO, COSYSMO, Maintainability Index, Cyclomatic Complexity,
and Halstead Complexity, It produces more accurate results than traditional software sizing tools, while
requiring less configuration and knowledge from the end user, as most of the estimation is based on automatic
measurements of an existing source code.
As many ancestor measurement methods use source Lines Of Code (LOC) to measure software size, WMFP
uses a parser to understand the source code breaking it down into micro functions and derive several code
complexity and volume metrics, which are then dynamically interpolated into a final effort score.

Measured Elements

The WMFP measured elements are several different metrics deduced from the source code by the
WMFP algorithm analysis. They are represented as percentage of the whole unit (project or file) effort, and are
translated into time. ProjectCodeMeter displays these elements both in units of absolute minutes and in
percentage of the file or project, according to the context.

Flow Complexity (FC) - Measures the complexity of a programs' flow control path in a similar way to the
traditional Cyclomatic Complexity, with higher accuracy by using weights and relations calculation.
Object Vocabulary (OV) - Measures the quantity of unique information contained by the programs' source
code, similar to the traditional Halstead Vocabulary with dynamic language compensation.
Object Conjuration (OC) - Measures the quantity of usage done by information contained by the
programs' source code.
Arithmetic Intricacy (AI) - Measures the complexity of arithmetic calculations across the program
Data Transfer (DT) - Measures the manipulation of data structures inside the program
Code Structure (CS) - Measures the amount of effort spent on the program structure such as separating code
into classes and functions
Inline Data (ID) - Measures the amount of effort spent on the embedding hard coded data
Comments (CM) - Measures the amount of effort spent on writing program comments

Calculation

The WMFP algorithm uses a 3 stage process: Function Analysis, APPW Transform, and Result Translation.
as shown in the following diagram:

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com

A dynamic algorithm balances and sums the measured elements and produces a total effort score.

M = the Source Metrics value measured by the WMFP analysis stage
W = the adjusted Weight assigned to metric M by the APPW model
N = the count of metric types
i = the current metric type index (iteration)
D = the cost drivers factor supplied by the user input
q = the current cost driver index (iteration)
K = the count of cost drivers

This score is then transformed into time by applying a statistical model called Average Programmer Profile
Weights (APPW) which is a proprietary successor to COCOMO II 2000 and COSYSMO. The resulting time in
Programmer Work Hours is then multiplied by a user defined Cost Per Hour of an average programmer, to
produce an average project cost, translated to the user currency.

See also Differences Between COCOMO, COSYSMO, REVIC, Function Points and WMFP

ProjectCodeMeter

Average Programmer Profile Weights (APPW)

APPW is a modern Software Engineering Statistical Cost Model created by Logical Solutions in 2009 team of
software experts experienced with traditional cost models COCOMO, COSYSMO , FISMA, COSMIC, KISS,
and NESMA, which knowledge base constitutes 5662 industrial and military projects. The team has conducted
a 12 month research adding further statistical study cases of additional 48 software projects of diverse sizes,
platforms and developers, focusing on commercial and open-source projects. Tightly integrated with the
WMFP source code sizing algorithm, allowed to produce a semi-automatic cost model requiring fewer input
cost drivers by completing the necessary information from the measured metrics provided by the WMFP
analysis.
APPW model is highly suited for evaluation of commercial software projects, Therefore the model assumes
several preconditions essential for commercial project development:
A. The programmers are experienced with the language, platform, development methodologies and tools
required for the project.
B. Project design and specifications document had been written, or a functional design stage will be separately
measured.

The APPW statistical model has been calibrated to be compatible with most popular Software Development
Lifecycle (SDLC) methodologies. See SDLC Compatibility notes.

Note that the model measures development only, It does not measure peripheral effort on learning, researching,
designing, documenting, packaging and marketing.

Effort results are expressed as work minutes which are part of a normal workday, as if work was equally
distributed across the day.
Workday includes lunch, small breaks (under 30 minutes each) and contextual breaks (contemplation regarding
implementation aspects: strategy planning, implementation modeling, enumerating reusables, consulting, update
meetings, etc.) and excludes any other breaks (tech support, company events, unrelated meetings, weekend,
holidays, sick days, etc.).

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com

ProjectCodeMeter

Compatibility with Software Development Lifecycle (SDLC) methodologies

The APPW statistical model has been calibrated to be compatible with the following Software Development
Lifecycle (SDLC) methodologies:
Motorola Six Sigma - Matching the calibrated target quality levels noted on the settings interface, where the
number of DMADV cycles match the sigma level.
Total Quality Managment (TQM) - Matching the calibrated target quality levels noted on the settings interface.
Boehm Spiral - Where project milestones Prototype1, Prototype2, Operational Prototype, Release correspond
to the Alpha, Beta, Pre-Release, Release quality settings.
Kaizen - Requires accumulating differential analysis measurments at every redesign cycle if PDCA cycle count
exceeds 3 or design delta per cycle exceeds 4%.
Agile (AUP/Lean/XP/DSDM) - Requires accumulating differential analysis measurments at every redesign
cycle (iteration).
Waterfall (BDUF) - Assuming nominal 1-9% design flaw.
Iterative and incremental development - Requires accumulating differential analysis measurments at every
redesign cycle (iteration).
Test Driven Development (TDD) - Requires accumulating differential analysis measurments if overall redesign
exceeds %6.

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com

ProjectCodeMeter

Software Development Productivity Monitoring Guidelines and Tips

ProjectCodeMeter enables actively monitoring the progress of software development, by using the Productivity
Monitoring process. In case the productivity drops significantly and steadily, it is recommended to improve the
accuracy of the project design specifications, check target quality definitions, improve work environment,
purchase development support tools, reassign personnel to other roles, change development methodology,
outsource project tasks which your team has difficulty with, gain experience and training for your team by
enrolling them to complementary seminars or hiring an external consultant.
This assumes no motivational issues exist, such as personal issues, compensation, daily experience, goal
alignment, and significant interpersonal conflicts.

Studies done by IBM showed the most crucial factor in software development productivity is work
environment conditions, as development teams in private, quiet, comfortable, uninterrupted environments were
260% more productive.

The second most important factors are team interactions and interdependency. Wisely splitting the project
development tasks into small self-contained units, then splitting your team into small groups based on these
tasks, will reduce the amount of interactions and interdependency, allow task parallelizing, exponentially
increasing team productivity.

In early design stage, creating a simple as possible control flow, modular and intuitive code structure, using
clear and accurate function descriptions, and well defined goals, can significantly reduce development time .

Using source code comments extensively to explain design considerations, usage pitfalls, and external
references, can dramatically reduce development and maintenance time on projects larger than 1 man month,
increase code reuse, and shorten programmer adjustment during personnel reassignment.

Performance review is best done weekly, in order to have enough data points to see an average performance
baseline. The purpose of which is for the manager to detect drops and issues in team performance and fix
them, not as a scare tactics to keep developers "in line" so to speak, nor as a competitive scoreboard - It should
be done without involving the developers in the process, as developers may be distracted or stressed by the
review itself, or the implications of it, as shown by the Karl Duncker candle experiment, that too high
motivational drive may damage creativity.

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com

ProjectCodeMeter

Code Quality Metrics

These code metrics give an indication to some basic source code qualities that affect maintainability, reuse and
peer review. ProjectCodeMeter also shows textual notices in the Quality Notes section of the Summary and the
Quality Report if any of these metrics indicate a problem.

Code Quality Notes Count - Shows the number of warnings indicating quality issues. Ideally this should be 0,
higher values indicate the code will be difficult to maintain.
Code to Comment Ratio (CCR) - Shows balance between Comment lines and Code Statements (LLOC), A
value of 100 means there's a comment for every code line, lower means only some of the code lines have
comments, while higher means that there is more than one comment for each code line. For example a value of
60 means that only 60% of the code statements have comments. notice that this is an average, so comments may
not be dispersed evenly across the file.
Essential Comment Factor (ECF) - Shows balance between High Quality Comment lines and important Code
Statements (Code Line). An important code statement is a statement which has a higher degree of complexity. A
value of 100 means there's a high quality comment for every important code statement, lower means only some
of the code lines have comments, while higher means that there is more than one comment for each code line.
For example a value of 60 means that only 60% of the important code statements have high quality comments.
This indication is important as it is essential that complex lines of code have comments explaining them. Notice
that this is an average, so comments may not be dispersed evenly across the file.
Code Structure Modularity (CSM) - Indicates the degree to which the code is divided into classes and
functions. Values around 100 indicate a good balance of code per module, lower values indicate low
modularity (bulky code), and higher values indicate fragmented code.
Logic Density (LD) - Indicates how condensed the logic within the program code. Lower values mean less
logic is packed into the code thus may indicate straight-forward or auto-generated code, while higher values
indicate code that is more likely to be generated by a person.
Source Divergence Entropy (SDE) - Indicates the degree to which objects are manipulated by logic. higher
value mean more manipulation.
Information Diversity Factor (IDF) - Indicates how much reuse is done with objects. higher value mean more
reuse.
Object Convolution Factor (OCF) - Shows the degree to which objects interact with each other. higher value
means more interaction, therefore more complex information flow.

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com

ProjectCodeMeter

Code Quality Notes

Quality notes warn on some basic coding issues (based on measured source code smells, metrics and qualities)
that affect development time and cost, maintainability, reuse and peer review, or incompatibility with the used
cost models, especially Wighted Micro Function Points, however ProjectCodeMeter will do its best to
understand your source code even if it's invalid or non-compilable.
These are good practice guidelines to make sure the estimation is effective, and the code will be easy to
understand and maintain (not syntax or error checking, as these are checked by your compiler and lint tools).
Note that ProjectCodeMeter checks are aimed towards managers and cost estimators, so while it covers some
relevant checks in known standards (such as MISRA, CERT C, CWE, JPL, IPA/SEC C, Netrino C, HIS, JSF++
AV, High Integrity C++, AUTOSAR, CAST-12) many aren't covered while it does check for novel issues not
covered by these standards.
Individual quality notes only appear for languages, platforms or application infrastructure providers (AIP) on
which they are relevant.

Checked Quality Notes:

* High LLOC duplicates - Means a lot of the code lines are the exact duplicates or very similar to eachother.
May indicate a lot of trivial boilerplate code exists.

* High duplicates influence - Means a lot of the estimated time is attributed to code lines that are the exact
duplicates of eachother. May indicate a lot of boilerplate code exists (often to interface some framework), or
code was copy-pasted instead of placed into a common function. This might cause the file to be over-valued
(You can treat the Duplicate Percent metric as uncertainty, which you may want to subtract from the estimated
work time and cost).

* Many numeric constants, may be auto-generated - appears when too many hard coded numbers are inside a
source file. Often automated tools are used for generating these types of embedded data, so this file effort may
be over estimated. Ask your developer if this file was auto-generated, if so don't include it in the analysis.

* May contain auto-generated parts - appears when there is some indication that some or all of the source file
was created by automated tools, so this file effort may be over-estimated. Ask your developer if this file was
auto-generated, if so don't include it in the analysis.

* Comments contain code - Means file/project contains commented out code. This might be unfinished code or
debug tests, that usually shouldn't be delivered to clients, as it may contain sensitive information, or make the
code needlessly harder to read.

* High scope cyclomatic - Means a scope (function) has high amount of conditionals and/or loops and my
benefit splitting/extruding into several functions.

* Might be test code - Means the file/project seem to contain test code (i.e unit tests) that shouldn't usually be
counted (unless it's extraordinarily complex like simulation)

* Task remarks - Means the code comments contains task remarks like "TODO", "FIXME", "BUG", "HACK",
"BROKEN", "DEBUG", "UNDONE" that may indicate unfinished work, or there are VCS merge errors in the
file.

* May lack const correctness - Shown for languages that support const correctness, Means that some functions
and their arguments might benefit from being declared as "const" or other immutable attribute. This generates
faster and smaller binaries, and helps minimizing software bugs by restricting accidental state/value
modification and allowing code analysis tools to perform deeper checks. It's one of the distinguishing marks of

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
file:///C:/Dev/ProjectPricingVS2005/Help/FN_results.htm

high quality code. Note that adding object const correctness is nearly a project wide decision, and may take
significant extra effort (as immutable methods can only call other immutable methods).

* Hardware specific code - Means there is code that accesses specific hardware or fits a specific CPU family.
This prevents the resulting software from running on some hardware, and may require extra effort to port to
other hardware types.

* Parallel execution code - Means there is code that runs several execution contexts in parallel, such as threads
or hardware interrupts. This speeds up software execution, but this code is harder to create and more error
prone (commonly: data corruption, resource deadlocks, security race vulnerabilities)

* Too few checks for this quality level - Means the code has less than the expected try/catch or return value
checks for the declared Quality Guarantee. Either the code has other means of error handling, or it might be of a
lower quality than declared. Checking return values, function inputs, and execution state is key in preventing
software bugs and security vulnerabilities.

* Restrictive license - Means license terms were found inside the code that may restrict its use, like mandating
you distribute the source code, or print a copyright notice. (i,e GPL / MPL / Creative Commons)

* Might be decompiled - May have been generated by a decompiler from a binary software file. while it may
compile correctly, this has significantly lesser value as source code, as it's harder to understand, and my
infringe upon the original software copyright.

* Might be obfuscated - Means the code appears to be mangled / compressed by a tool that makes it hard to
understand by a human developer, but compile and run correctly, sometimes faster. Obfuscated files have
significantly lesser value as source code and not considered as such.

* No Code - doesn't contain any code. either file is empty or contains only markup (i.e HTML file without
script)

* Conditional compilation - Means there's code for several alternative binary software that can be compiled
from this source. This can be selected by some compiler toolchain option, like macro definitions, compiler
directives, or compiler type. Be aware that the binary the compiler generates by default might be different than
the one you need or the one tested by QA, so you may need to set up the project to get the one intended. Upon
releasing new binary software you may need to make sure to test that specific compilation or all of them, rather
than relying on alternate compilation passing the tests.

* Massive code deletion - Means a lot of code was deleted, may be due to aggressive optimization, refactoring,
or accidental deletion.

* Old version has newer timestamp - in differential analysis the file in the "old version" folder is newer than
the file in the "project folder". This makes timestamp based span estimation unreliable. Make sure you didn't
accidentally switch between the Current and Old version.

* Lines were commented out - in differential analysis some previously active code lines were converted into a
comment. This is sometimes done to keep some debugging or unfinished code during development, or by
mistake. This code probably shouldn't be released to clients as it contains code in comments, which may be
confusing and harder to read.

* Commented out lines were reintroduced - in differential analysis some code that was in a comment was now
made active by removing the comment markers. this may indicate some debug code is present by mistake.
ProjectCodeMeter won't include this code in the effort score (hours and cost) as it was already scored when it
was first written.

* Lines were commented out and/or reintroduced - in differential analysis some previously active code lines
were converted into a comment, and / or other code that was in a comment was now made active. (see above)

* Big file, consider splitting - Indicates that a file size may be too large to maintain comfortably, as too much
functionality / data / UI markup was placed inside.

* Code structure can be simplified. - appears when code structure (functions, classes, variables) is very
complex, this may be due to one or more reasons:
- unnecessarily long variable, class or function names
- over dividing the code to small files, classes or functions that contain little or no code inside
- using absolute references instead of relative, local or cached ones. For example: java.lang.String myname =
java.lang.String("William")
- using long reference chains. For example: stDressColor = MyDataStructure.users.attributes.hair.color;
- adding redundant code syntax such as extra semicolons, braces or scopes. For example: while(((i >))){{{
i++;;;;;;}}};;;
Note that this may be unavoidable on complex applications or when creating an application skeleton.
Complex code structure is harder to maintain and increases the chance of errors (bugs).

* Needs more comments - appears when there aren't enough comments in the source file. Uncommented code is
very hard to maintain or review. It's recommended to at least comment on WHY the code and design was made
and what pitfalls or limits it has. Optionally a general description of WHAT a block of code is supposed to do.

* May need breaking down into functions or classes - appears when source code has low modularity (bulky
code) with a lot of code stuffed into a single class or function. Large code chunks are difficult to understand and
review. It is recommended to split these large code blocks into smaller functions, classes or even files.

* Code structure may be too fragmented - appears when over dividing the code into small classes or functions
that contain little or no code inside. Note that this may be unavoidable on complex applications or when
creating an application skeleton.

* Function and attribute nesting may need simplification - appears due to several reasons:
- over using absolute references instead of relative, local or cached ones. For example:
 java.lang.String myname = new java.lang.String("William"); //this is unnecessarily long
 String myname = new String("William"); //this can be used instead
- using long reference chains instead of cached ones. For example:
 YourEyeColor = MyDataStructure.seer.attributes.eye.color;
 YourDressColor = MyDataStructure.seer.attributes.dress.color; //most of these 2 lines can be cached
 YouAttributes = MyDataStructure.seer.attributes; //this caching can be used instead
 YourDressColor = YourAttributes.dress.color; //now it's more readable

* May benefit from line breaks - Means that adding some new line spacing may help make the code easier to
read and understand.

* Scope too deep - Means there are many nesting scopes, either cascading classes, loops or nesting "if"s, that
may need flattening out to improve code readability.

ProjectCodeMeter

Quantitative Metrics

These are the traditional metrics used by sizing algorithms, and are given for general information. They can be
given per file or for the entire project, depending on the context.

Files - The number of files which the metrics where measured from (per project only).
Project/File Size - Size in bytes of this/all source files in the project
Lines Populated - lines of text that aren't empty (lines with whitespace only are considered empty as well)
SLOC - Source Lines Of Code, which is the number of text lines that contain executable code (also called
pSLOC, SLOC-P, Physical executable Source Lines Of Code).
LLOC - Logical Lines Of Code, which is the number of code statements in the code (also called Effective Lines
Of Code, eLoc, eSLOC, SLOC-L). ProjectCodeMeter excludes any auto-generated, empty, or ineffective code
statements from the LLOC count (see notes on counting LLOC). This count includes refactored and duplicate
LLOCs.
Duplicate LLOC - Logical Lines Of Code (code statements) that already appear in the file, either exactly
identical or very similar. This excludes the first appearance.
Refactored LLOC - Logical Lines Of Code (code statements) that were likely edited using some automated
code manipulation tool.
Multi Line Comments - Counts the number of comments that span more than one text line.
Single Line Comments - Counts the number of comments that span only a single text line.
High Quality Comments - Counts the number of comments that are considered verbally descriptive, regardless
of how many text lines they span. (a subset of single and multi line comments).
Strings - The number of "hard coded" text strings embedded in code sections of the source. This is language
dependent. It includes char arrays and headdocs, but does not count text outside code sections, such as mixed
HTML text in a PHP page.
String Words - The number words inside all the "hard coded" text strings mentioned above.
Numeric Constants - The number of "hard coded" numbers embedded in the source code.
Functions - The number of functions, methods, and function macros.
Cyclomatic Complexity-1 - The standard metric Cyclomatic Complexity count with 1 subtracted, to exclude the
main execution path (which always exists). You can add back the 1 to get the standard Cyclomatic Complexity
count.
Unfinished Tasks - Counts the number of Task remarks within the file/project, such as comments containing
"FIXME", "TODO", "DEBUG", "HACK", "BROKEN" etc. or failed merge markers, used by developers to
indicate unfinished work.

Code Quality Notes - The amount of Quality Notes and warnings detected for this file/project.
Branches - The amount of branch statements (i.e return, break, goto...)
Conditionals - The amount of conditional statements (i.e if, catch, case...)
Checks - The amount of boolean comparison statements (i.e ==, !=, >, < ...)
Loops - The amount of loop statements (i.e while, for...)
Arithmetic Operations - The amount of arithmetic operations (i.e +, -...)
Bitwise Operations - The amount of bitwise operations (i.e &, | ...)
Unique Code Words - The amount unique words in the code area (variables, functions, macros, excluding
reserved words) counting only the first appearance
Code Words - The count of duplicate appearances of code words in the code area, excluding the first
appearance
Code Chars - The amount of meaningful characters in the code area (including numeric constants. excluding
strings, pragmas and double spaces)
String Chars - The amount of characters in all strings, char arrays and single chars
Comment Chars - The amount of characters in all comments

Max. Scope Depth - The maximal depth of nesting scopes (the depth of the deepest nesting scope)

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com

Max. Scope Cyclomatic - The Cyclomatic-1 count of the most flow complex scope (function)

File Type Distribution - The number of files from each type (i.e C, C++, Java, etc.) found in the project (per
project only)

In Differential mode, these metrics are broken down into sub-groups:

New: Metrics counted only within new code (that was added)
Modified: Metrics counted only within modified code (that was edited)
Refactored: Metrics counted only within trivially refactored code (that was usually edited using some
automated code manipulation tool)
Deleted: Metrics counted only within the code that was completely thrown away (excluding any commented
out code).
Same: Metrics counted only within code that hasn't changed between versions
Total: Metric counts of only the current version of the project in it's entirety (ignoring the old version), as if
was developed from scratch.
Previous Total: Metric counts of only the old version in it's entirety (ignoring the current version), as if was
developed from scratch.
Delta: Metric count difference between the old and new version, as if both were developed from scratch.

ProjectCodeMeter

COCOMO

[article cited from Wikipedia]

The Constructive Cost Model (COCOMO) is an algorithmic software cost estimation model developed by
Barry Boehm. The model uses a basic regression formula, with parameters that are derived from historical
project data and current project characteristics.

COCOMO was first published in 1981 Barry W. Boehm's Book Software engineering economics[1] as a
model for estimating effort, cost, and schedule for software projects. It drew on a study of 63 projects at TRW
Aerospace where Barry Boehm was Director of Software Research and Technology in 1981. The study
examined projects ranging in size from 2,000 to 100,000 lines of code, and programming languages ranging
from assembly to PL/I. These projects were based on the waterfall model of software development which was
the prevalent software development process in 1981.

References to this model typically call it COCOMO 81. In 1997 COCOMO II was developed and finally
published in 2000 in the book Software Cost Estimation with COCOMO II[2]. COCOMO II is the successor
of COCOMO 81 and is better suited for estimating modern software development projects. It provides more
support for modern software development processes and an updated project database. The need for the new
model came as software development technology moved from mainframe and overnight batch processing to
desktop development, code reusability and the use of off-the-shelf software components. This article refers to
COCOMO 81.

COCOMO consists of a hierarchy of three increasingly detailed and accurate forms. The first level, Basic
COCOMO is good for quick, early, rough order of magnitude estimates of software costs, but its accuracy is
limited due to its lack of factors to account for difference in project attributes (Cost Drivers). Intermediate
COCOMO takes these Cost Drivers into account and Detailed COCOMO additionally accounts for the
influence of individual project phases.

Basic COCOMO

Basic COCOMO computes software development effort (and cost) as a function of program size. Program size
is expressed in estimated thousands of lines of code (KLOC).

COCOMO applies to three classes of software projects:

Organic projects - "small" teams with "good" experience working with "less than rigid" requirements
Semi-detached projects - "medium" teams with mixed experience working with a mix of rigid and less
than rigid requirements
Embedded projects - developed within a set of "tight" constraints (hardware, software, operational, ...)

The basic COCOMO equations take the form

Effort Applied = ab(KLOC)bb [man-months]

Development Time = cb(Effort Applied)db [months]
People required = Effort Applied / Development Time [count]

The coefficients ab, bb, cb and db are given in the following table.

Software project ab bb cb db

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
http://en.wikipedia.org/wiki/COCOMO

Organic 2.4 1.05 2.5 0.38

Semi-detached 3.0 1.12 2.5 0.35
Embedded 3.6 1.20 2.5 0.32

Basic COCOMO is good for quick estimate of software costs. However it does not account for differences in
hardware constraints, personnel quality and experience, use of modern tools and techniques, and so on.

Intermediate COCOMO

Intermediate COCOMO computes software development effort as function of program size and a set of "cost
drivers" that include subjective assessment of product, hardware, personnel and project attributes. This
extension considers a set of four "cost drivers", each with a number of subsidiary attributes:-

Product attributes
Required software reliability
Size of application database
Complexity of the product

Hardware attributes
Run-time performance constraints
Memory constraints
Volatility of the virtual machine environment
Required turnabout time

Personnel attributes
Analyst capability
Software engineering capability
Applications experience
Virtual machine experience
Programming language experience

Project attributes
Use of software tools
Application of software engineering methods
Required development schedule

Each of the 15 attributes receives a rating on a six-point scale that ranges from "very low" to "extra
high" (in importance or value). An effort multiplier from the table below applies to the rating. The
product of all effort multipliers results in an effort adjustment factor (EAF). Typical values for EAF
range from 0.9 to 1.4.

Cost Drivers

Ratings
Very
Low Low Nominal High

Very
High

Extra
High

Product attributes
Required software reliability 0.75 0.88 1.00 1.15 1.40
Size of application database 0.94 1.00 1.08 1.16
Complexity of the product 0.70 0.85 1.00 1.15 1.30 1.65
Hardware attributes
Run-time performance constraints 1.00 1.11 1.30 1.66
Memory constraints 1.00 1.06 1.21 1.56
Volatility of the virtual machine environment 0.87 1.00 1.15 1.30
Required turnabout time 0.87 1.00 1.07 1.15
Personnel attributes

Analyst capability 1.46 1.19 1.00 0.86 0.71

Applications experience 1.29 1.13 1.00 0.91 0.82
Software engineer capability 1.42 1.17 1.00 0.86 0.70
Virtual machine experience 1.21 1.10 1.00 0.90
Programming language experience 1.14 1.07 1.00 0.95
Project attributes
Application of software engineering methods 1.24 1.10 1.00 0.91 0.82
Use of software tools 1.24 1.10 1.00 0.91 0.83
Required development schedule 1.23 1.08 1.00 1.04 1.10

The Intermediate Cocomo formula now takes the form:

E=ai(KLoC)(bi)EAF

where E is the effort applied in person-months, KLoC is the estimated number of thousands of delivered lines
of code for the project, and EAF is the factor calculated above. The coefficient ai and the exponent bi are given
in the next table.

Software project ai bi
Organic 3.2 1.05
Semi-detached 3.0 1.12
Embedded 2.8 1.20

The Development time D calculation uses E in the same way as in the Basic COCOMO.

Detailed COCOMO

Detailed COCOMO - incorporates all characteristics of the intermediate version with an assessment of the cost
driver's impact on each step (analysis, design, etc.) of the software engineering process 1. the detailed model
uses different efforts multipliers for each cost drivers attribute these Phase Sensitive effort multipliers are
each to determine the amount of effort required to complete each phase.

ProjectCodeMeter

Differences Between COCOMO, COSYSMO, REVIC, Function Points and WMFP

The main cost algorithm used by ProjectCodeMeter, Weighted Micro Function Points (WMFP), is based on
code complexity and functionality measurements (unlike COCOMO and REVIC models which use Lines Of
Code). The various model results can be used as reference for comparing WMFP to COCOMO or REVIC, as
well as getting a design time estimation, a stage which WMFP does not attempt to cover due to its high
statistical variation and inconsistency.

WMFP+APPW is specifically tailored to evaluate commercial software project development time (where
management is relatively efficient) on projects of all sizes, while COCOMO was modeled mainly on large
aerospace and government projects, and evaluates more factors such as design time. COSYSMO can evaluate
hardware projects too. The REVIC model designed for military projects also adds effort estimation for 2
optional development phases into its estimation, initial Software Specification Review, and a final
Development Test and Evaluation phase. Function Points (in most of its flavors, mainly IFPUG) uses general
complexity and functionality assessments for estimating a "user perceived" functionality, while WMFP uses
several different complexities (such as control flow and arithmetic) to assess a "developer perceived"
functionality.
Due to the model complexity, WMFP realistically requires a project source code analyzed (either current code
or a similar one as an analogy), while COCOMO, COSYSMO, REVIC and Function Points allow you to guess
the size (in KLOC or Functions) of the software yourself. So in effect they are complementary.

For Basic COCOMO results, ProjectCodeMeter uses the static formula for Organic Projects of the Basic
COCOMO model, using LLOC alone.
For the Intermediate COCOMO results, ProjectCodeMeter uses automatic measurements of the source code to
configure some of the cost drivers.

Function Points and WMFP are linear, which makes them suitable for measuring version differences, while
COCOMO, COSYSMO and REVIC are logarithmic.

At first glance, As COCOMO gives an overall project cost and time, you may subtract the WMFP result value
from the equivalent COCOMO result value to get the design stage estimation value:
 (COCOMO Cost) - (WMFP Cost) = (Design Stage Cost)
But in effect COCOMO and WMFP produce asymmetric results, as COCOMO estimates may be lower at times
than the WMFP estimates, specifically on logically complex projects, as WMFP takes complexity into account.
Note that estimation of design phase time and costs may not be very accurate as many statistical variations exist
between projects. COCOMO statistical model was based on data gathered primarily from large industrial and
military software projects, and is not very suitable for small to medium commercial projects.

Cost model optimal use case comparison table:

Cost Model Best Fit Environment Formula
type

COCOMO
Large corporate and government
software projects, including
embedded firmware

Logarithmic

COSYSMO
Large corporate and government
projects, including embedded
firmware and hardware

Logarithmic

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com

Function
Points

Software projects of all sizes, mainly
desktop OS based platforms

Linear

Weighted
Micro
Function
Points

Commercial software projects of all
sizes and environments, including
embedded firmware

Linear

REVIC Large military software projects,
including embedded firmware Logarithmic

ProjectCodeMeter

COSYSMO

[article cited from Wikipedia]

The Constructive Systems Engineering Cost Model (COSYSMO) was created by Ricardo Valerdi while at
the University of Southern California Center for Software Engineering. It gives an estimate of the number of
person-months it will take to staff systems engineering resources on hardware and software projects. Initially
developed in 2002, the model now contains a calibration data set of more than 50 projects provided by major
aerospace and defense companies such as Raytheon, Northrop Grumman, Lockheed Martin, SAIC, General
Dynamics, and BAE Systems.

COSYSMO supports the ANSI/EIA 632 standard as a guide for identifying the Systems Engineering tasks and
ISO/IEC 15288 standard for identifying system life cycle phases. Several CSSE Affiliates, LAI Consortium
Members, and members of the International Council on Systems Engineering (INCOSE) have been involved in
the definition of the drivers, formulation of rating scales, data collection, and strategic direction of the model.

Similar to its predecessor COCOMO, COSYSMO computes effort (and cost) as a function of system functional
size and adjusts it based on a number of environmental factors related to systems engineering.

COSYSMO's central cost estimating relationship, or CER is of the form:

where "Size" is one of four size additive size drivers, and EM represents one of fourteen multiplicative effort
multipliers.

COSYSMO computes software development effort as function of program size and a set of "cost drivers" that
include subjective assessment of product, hardware, personnel and project attributes:

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
http://en.wikipedia.org/wiki/COCOMO

ProjectCodeMeter

Cyclomatic complexity
[article cited from Wikipedia]

Cyclomatic complexity (or conditional complexity) is a software metric (measurement). It was developed by
Thomas J. McCabe, Sr. in 1976 and is used to indicate the complexity of a program. It directly measures the
number of linearly independent paths through a program's source code. The concept, although not the method, is
somewhat similar to that of general text complexity measured by the Flesch-Kincaid Readability Test.

Cyclomatic complexity is computed using the control flow graph of the program: the nodes of the graph
correspond to indivisible groups of commands of a program, and a directed edge connects two nodes if the
second command might be executed immediately after the first command. Cyclomatic complexity may also be
applied to individual functions, modules, methods or classes within a program.

One testing strategy, called Basis Path Testing by McCabe who first proposed it, is to test each linearly
independent path through the program; in this case, the number of test cases will equal the cyclomatic
complexity of the program.[1]

Description

A control flow graph of a
simple program. The program
begins executing at the red
node, then enters a loop (group
of three nodes immediately
below the red node). On exiting
the loop, there is a conditional
statement (group below the
loop), and finally the program
exits at the blue node. For this
graph, E = 9, N = 8 and P = 1,
so the cyclomatic complexity of
the program is 3.

The cyclomatic complexity of a section of source code is the count of the number of linearly independent paths
through the source code. For instance, if the source code contained no decision points such as IF statements or
FOR loops, the complexity would be 1, since there is only a single path through the code. If the code had a
single IF statement containing a single condition there would be two paths through the code, one path where the

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
http://en.wikipedia.org/wiki

IF statement is evaluated as TRUE and one path where the IF statement is evaluated as FALSE.

Mathematically, the cyclomatic complexity of a structured program[note 1] is defined with reference to a
directed graph containing the basic blocks of the program, with an edge between two basic blocks if control
may pass from the first to the second (the control flow graph of the program). The complexity is then defined
as:[2]

M = E − N + 2P

where

M = cyclomatic complexity
E = the number of edges of the graph
N = the number of nodes of the graph
P = the number of connected components

The same function as above,
shown as a strongly-connected
control flow graph, for
calculation via the alternative
method. For this graph, E = 10,
N = 8 and P = 1, so the
cyclomatic complexity of the
program is still 3.

An alternative formulation is to use a graph in which each exit point is connected back to the entry point. In this
case, the graph is said to be strongly connected, and the cyclomatic complexity of the program is equal to the
cyclomatic number of its graph (also known as the first Betti number), which is defined as:[2]

M = E − N + P

This may be seen as calculating the number of linearly independent cycles that exist in the graph, i.e. those
cycles that do not contain other cycles within themselves. Note that because each exit point loops back to the
entry point, there is at least one such cycle for each exit point.

For a single program (or subroutine or method), P is always equal to 1. Cyclomatic complexity may, however,
be applied to several such programs or subprograms at the same time (e.g., to all of the methods in a class), and
in these cases P will be equal to the number of programs in question, as each subprogram will appear as a
disconnected subset of the graph.

It can be shown that the cyclomatic complexity of any structured program with only one entrance point and one
exit point is equal to the number of decision points (i.e., 'if' statements or conditional loops) contained in that
program plus one.[2][3]

Cyclomatic complexity may be extended to a program with multiple exit points; in this case it is equal to:

π - s + 2

where π is the number of decision points in the program, and s is the number of exit points.[3][4]

Formal definition

Formally, cyclomatic complexity can be defined as a relative Betti number, the size of a relative homology
group:

which is read as “the first homology of the graph G, relative to the terminal nodes t”. This is a technical way of
saying “the number of linearly independent paths through the flow graph from an entry to an exit”, where:

“linearly independent” corresponds to homology, and means one does not double-count backtracking;
“paths” corresponds to first homology: a path is a 1-dimensional object;
“relative” means the path must begin and end at an entry or exit point.

This corresponds to the intuitive notion of cyclomatic complexity, and can be calculated as above.

Alternatively, one can compute this via absolute Betti number (absolute homology – not relative) by identifying
(gluing together) all terminal nodes on a given component (or equivalently, draw paths connecting the exits to
the entrance), in which case (calling the new, augmented graph , which is), one obtains:

This corresponds to the characterization of cyclomatic complexity as “number of loops plus number of
components”.

Etymology / Naming

The name Cyclomatic Complexity is motivated by the number of different cycles in the program control flow
graph, after having added an imagined branch back from the exit node to the entry node.[2]

Applications

Limiting complexity during development

One of McCabe's original applications was to limit the complexity of routines during program development; he
recommended that programmers should count the complexity of the modules they are developing, and split them
into smaller modules whenever the cyclomatic complexity of the module exceeded 10.[2] This practice was
adopted by the NIST Structured Testing methodology, with an observation that since McCabe's original
publication, the figure of 10 had received substantial corroborating evidence, but that in some circumstances it
may be appropriate to relax the restriction and permit modules with a complexity as high as 15. As the
methodology acknowledged that there were occasional reasons for going beyond the agreed-upon limit, it
phrased its recommendation as: "For each module, either limit cyclomatic complexity to [the agreed-upon
limit] or provide a written explanation of why the limit was exceeded."[5]

Implications for Software Testing

Another application of cyclomatic complexity is in determining the number of test cases that are necessary to
achieve thorough test coverage of a particular module.

It is useful because of two properties of the cyclomatic complexity, M, for a specific module:

M is an upper bound for the number of test cases that are necessary to achieve a complete branch
coverage.
M is a lower bound for the number of paths through the control flow graph (CFG). Assuming each test
case takes one path, the number of cases needed to achieve path coverage is equal to the number of paths
that can actually be taken. But some paths may be impossible, so although the number of paths through the
CFG is clearly an upper bound on the number of test cases needed for path coverage, this latter number (of
possible paths) is sometimes less than M.

All three of the above numbers may be equal: branch coverage cyclomatic complexity number of paths.

For example, consider a program that consists of two sequential if-then-else statements.

if(c1())
 f1();
else
 f2();

if(c2())
 f3();
else
 f4();

The control flow graph of the
source code above; the red
circle is the entry point of the
function, and the blue circle is
the exit point. The exit has been
connected to the entry to make
the graph strongly connected.

In this example, two test cases are sufficient to achieve a complete branch coverage, while four are necessary
for complete path coverage. The cyclomatic complexity of the program is 3 (as the strongly-connected graph for
the program contains 9 edges, 7 nodes and 1 connected component).

In general, in order to fully test a module all execution paths through the module should be exercised. This
implies a module with a high complexity number requires more testing effort than a module with a lower value
since the higher complexity number indicates more pathways through the code. This also implies that a module
with higher complexity is more difficult for a programmer to understand since the programmer must understand
the different pathways and the results of those pathways.

Unfortunately, it is not always practical to test all possible paths through a program. Considering the example
above, each time an additional if-then-else statement is added, the number of possible paths doubles. As the

program grew in this fashion, it would quickly reach the point where testing all of the paths was impractical.

One common testing strategy, espoused for example by the NIST Structured Testing methodology, is to use the
cyclomatic complexity of a module to determine the number of white-box tests that are required to obtain
sufficient coverage of the module. In almost all cases, according to such a methodology, a module should have
at least as many tests as its cyclomatic complexity; in most cases, this number of tests is adequate to exercise
all the relevant paths of the function.[5]

As an example of a function that requires more than simply branch coverage to test accurately, consider again
the above function, but assume that to avoid a bug occurring, any code that calls either f1() or f3() must also
call the other.[note 2] Assuming that the results of c1() and c2() are independent, that means that the function as
presented above contains a bug. Branch coverage would allow us to test the method with just two tests, and one
possible set of tests would be to test the following cases:

c1() returns true and c2() returns true
c1() returns false and c2() returns false

Neither of these cases exposes the bug. If, however, we use cyclomatic complexity to indicate the number of
tests we require, the number increases to 3. We must therefore test one of the following paths:

c1() returns true and c2() returns false
c1() returns false and c2() returns true

Either of these tests will expose the bug.

Cohesion

One would also expect that a module with higher complexity would tend to have lower cohesion (less than
functional cohesion) than a module with lower complexity. The possible correlation between higher complexity
measure with a lower level of cohesion is predicated on a module with more decision points generally
implementing more than a single well defined function. A 2005 study showed stronger correlations between
complexity metrics and an expert assessment of cohesion in the classes studied than the correlation between the
expert's assessment and metrics designed to calculate cohesion.[6]

Correlation to number of defects

A number of studies have investigated cyclomatic complexity's correlation to the number of defects contained
in a module. Most such studies find a strong positive correlation between cyclomatic complexity and defects:
modules that have the highest complexity tend to also contain the most defects. For example, a 2008 study by
metric-monitoring software supplier Enerjy analyzed classes of open-source Java applications and divided
them into two sets based on how commonly faults were found in them. They found strong correlation between
cyclomatic complexity and their faultiness, with classes with a combined complexity of 11 having a probability
of being fault-prone of just 0.28, rising to 0.98 for classes with a complexity of 74.[7]

However, studies that control for program size (i.e., comparing modules that have different complexities but
similar size, typically measured in lines of code) are generally less conclusive, with many finding no
significant correlation, while others do find correlation. Some researchers who have studied the area question
the validity of the methods used by the studies finding no correlation.[8]

ProjectCodeMeter variant of cyclomatic counting

Many tools count Cyclomatic Complexity differently from each other, as there are different approaches to what
code generates a new execution path (a node). ProjectCodeMeter counts statements according to their effective
function, not strictly the keyword. The general guiding rule is to give the same cyclomatic count to codes with
the same functionality, regardless or the way it is phrased.

For example:

int MyFunction(nType){

 //an "if" statement with a logical OR inside counts as 2 paths since it's functionally equivalent of 2 "if"
statements, each with it's own half of the condition.
 if ((nType == 0) || (nType == 255)){
 nType = 1;
 }

 //A "switch" keyword doesn't count as new path , since only the included "case" and "default"
statements cause new code paths.
 switch(nType) {

 case 1: //a new code path
 printf("hello"); //function calls doesn't count as new paths, as they linearly execute then return to
the same point - the next line.
 return true; //return or break statements doesn't count as new paths, as they simply branch back to
the main code path
 case 2: //cases that have no "break" or "return" indeed cause a new code path, since it is equivalent
of copying the code from the next "case" to it.
 printf("have a ");
 case 3: //a "case" statement without code is a new code path since it is equivalent of copying the
code from the next "case" to it.
 case 4:
 printf("good evening");
 default:
 break; //again, break just branches back to the main code path, ending the code path started by the
"case" or "default" statements
 }
 return false;
}

ProjectCodeMeter

Process fallout

[article cited from Wikipedia]

Process fallout quantifies how many defects a process produces and is measured by Defects Per Million
Opportunities (DPMO) or PPM. Process yield is, of course, the complement of process fallout (if the process
output is approximately normally distributed) and is approximately equal to the area under the probability
density function:

In process improvement efforts, the process capability index or process capability ratio is a statistical
measure of process capability: The ability of a process to produce output within specification limits. The
mapping from process capability indices, such as Cpk, to measures of process fallout is straightforward:

Short term process fallout:

Sigma level DPMO Percent defective Percentage yield Cpk
1 317,311 31.73% 68.27% 0.33

2 45,500 4.55% 95.45% 0.67

3 2,700 0.27% 99.73% 1.00

4 63 0.01% 99.9937% 1.33

5 1 0.0001% 99.999943% 1.67

6 0.002 0.0000002% 99.9999998% 2.00
7 0.0000026 0.00000000026% 99.99999999974% 2.33

Long term process fallout:

Sigma level DPMO Percent defective Percentage yield Cpk*
1 691,462 69% 31% –0.17

2 308,538 31% 69% 0.17

3 66,807 6.7% 93.3% 0.5

4 6,210 0.62% 99.38% 0.83

5 233 0.023% 99.977% 1.17

6 3.4 0.00034% 99.99966% 1.5
7 0.019 0.0000019% 99.9999981% 1.83

* Note that long term figures assume process mean will shift by 1.5 sigma toward the side with the critical
specification limit, as specified by the Motorola Six Sigma process statistical model. Determining the actual
periods for short term and long-term is process and industry dependent, Ideally, log term is where when all
trends, seasonality, and all types of special causes had manifested at least once. For the software industry, short
term tends to describe operational time frames up to 6 moths, while gradually entering long-term at 18 months.

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
http://en.wikipedia.org
http://en.wikipedia.org/wiki/Process_capability_index#cite_note-0

ProjectCodeMeter

Halstead complexity measures

[article cited from Wikipedia]

Halstead complexity measures are software metrics introduced by Maurice Howard Halstead in 1977. These
metrics are computed statically, without program execution.

Calculation

First we need to compute the following numbers, given the program source code:

n1 = the number of distinct operators
n2 = the number of distinct operands
N1 = the total number of operators
N2 = the total number of operands

From these numbers, five measures can be calculated:

Program length:
Program vocabulary:
Volume:

Difficulty :
Effort:

The difficulty measure is related to the difficulty of the program to write or understand, e.g. when doing code
review.

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
http://en.wikipedia.org

ProjectCodeMeter

Maintainability Index (MI)

[article cited from Wikipedia]

Maintainability Index is a software metric which measures how maintainable (easy to support and change) the
source code is. The maintainability index is calculated as a factored formula consisting of Lines Of Code,
Cyclomatic Complexity and Halstead volume. It is used in several automated software metric tools, including
the Microsoft Visual Studio 2010 development environment, which uses a shifted scale (0 to 100) derivative.

Calculation

First we need to measure the following metrics from the source code:

V = Halstead Volume
G = Cyclomatic Complexity
LOC = count of source Lines Of Code (SLOC)
CM = percent of lines of Comment (optional)

From these measurements the MI can be calculated:

The original formula:
MI = 171 - 5.2 * ln(V) - 0.23 * (G) - 16.2 * ln(LOC)

The derivative used by SEI is calculated as follows:
MI = 171 - 5.2 * log2(V) - 0.23 * G - 16.2 * log2 (LOC) + 50 * sin (sqrt(2.4 * CM))

The derivative used by Microsoft Visual Studio (since v2008) is calculated as follows:
MI = MAX(0,(171 - 5.2 * ln(Halstead Volume) - 0.23 * (Cyclomatic Complexity) - 16.2 * ln(Lines of
Code))*100 / 171)

In all derivatives of the formula, the most major factor in MI is Lines Of Code, which effectiveness have been
subjected to debate.

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
http://en.wikipedia.org
http://www.microsoft.com
http://www.microsoft.com/visualstudio
http://www.sei.cmu.edu

ProjectCodeMeter

Process capability index

[article cited from Wikipedia]

In process improvement efforts, the process capability index or process capability ratio is a statistical
measure of process capability: The ability of a process to produce output within specification limits.[1] The
concept of process capability only holds meaning for processes that are in a state of statistical control. Process
capability indices measure how much "natural variation" a process experiences relative to its specification
limits and allows different processes to be compared with respect to how well an organization controls them.

If the upper and lower specification limits of the process are USL and LSL, the target process mean is T, the
estimated mean of the process is and the estimated variability of the process (expressed as a standard
deviation) is , then commonly-accepted process capability indices include:

Index Description

Estimates what the process would be capable of producing if the process
could be centered. Assumes process output is approximately normally
distributed.

Estimates process capability for specifications that consist of a lower
limit only (for example, strength). Assumes process output is
approximately normally distributed.

Estimates process capability for specifications that consist of an upper
limit only (for example, concentration). Assumes process output is
approximately normally distributed.

Estimates what the process is capable of producing if the process target
is centered between the specification limits. If the process mean is not
centered, overestimates process capability. if the process
mean falls outside of the specification limits. Assumes process output is
approximately normally distributed.

Estimates process capability around a target, T. is always greater
than zero. Assumes process output is approximately normally distributed.

 is also known as the Taguchi capability index.[2]

Estimates process capability around a target, T, and accounts for an off-
center process mean. Assumes process output is approximately normally
distributed.

 is estimated using the sample standard deviation.

Recommended values

Process capability indices are constructed to express more desirable capability with increasingly higher
values. Values near or below zero indicate processes operating off target (far from T) or with high variation.

Fixing values for minimum "acceptable" process capability targets is a matter of personal opinion, and what
consensus exists varies by industry, facility, and the process under consideration. For example, in the
automotive industry, the AIAG sets forth guidelines in the Production Part Approval Process, 4th edition for
recommended Cpk minimum values for critical-to-quality process characteristics. However, these criteria are
debatable and several processes may not be evaluated for capability just because they have not properly been

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
http://en.wikipedia.org

assessed.

Since the process capability is a function of the specification, the Process Capability Index is only as good as
the specification . For instance, if the specification came from an engineering guideline without considering the
function and criticality of the part, a discussion around process capability is useless, and would have more
benefits if focused on what are the real risks of having a part borderline out of specification. The loss function
of Taguchi better illustrates this concept.

At least one academic expert recommends[3] the following:

Situation Recommended minimum process
capability for two-sided specifications

Recommended minimum process
capability for one-sided specification

Existing process 1.33 1.25
New process 1.50 1.45
Safety or critical
parameter for existing
process

1.50 1.45

Safety or critical
parameter for new
process

1.67 1.60

Six Sigma quality process 2.00 2.00

It should be noted though that where a process produces a characteristic with a capability index greater than
2.5, the unnecessary precision may be expensive[4].

Relationship to measures of process fallout

The mapping from process capability indices, such as Cpk, to measures of process fallout is straightforward.
Process fallout quantifies how many defects a process produces and is measured by DPMO or PPM. Process
yield is, of course, the complement of process fallout and is approximately equal to the area under the

probability density function if the process output is approximately normally
distributed.

In the short term ("short sigma"), the relationships are:

Cpk
Sigma level

(σ)
Area under the probability density

function Φ(σ) Process yield Process fallout (in terms of
DPMO/PPM)

0.33 1 0.6826894921 68.27% 317311
0.67 2 0.9544997361 95.45% 45500
1.00 3 0.9973002039 99.73% 2700
1.33 4 0.9999366575 99.99% 63
1.67 5 0.9999994267 99.9999% 1
2.00 6 0.9999999980 99.9999998% 0.002

In the long term, processes can shift or drift significantly (most control charts are only sensitive to changes of
1.5σ or greater in process output), so process capability indices are not applicable as they require statistical
control.

Example

Consider a quality characteristic with target of 100.00 μm and upper and lower specification limits of 106.00
μm and 94.00 μm respectively. If, after carefully monitoring the process for a while, it appears that the process

is in control and producing output predictably (as depicted in the run chart below), we can meaningfully
estimate its mean and standard deviation.

If and are estimated to be 98.94 μm and 1.03 μm, respectively, then

Index

The fact that the process is running about 1σ below its target is reflected in the markedly different values for
Cp, Cpk, Cpm, and Cpkm.

ProjectCodeMeter

OpenSource code repositories

As OpenSource software gained overwhelming popularity in the last decade, many online sites offer free
hosted open source projects for download. Here is a short list of the most popular at this time:

SourceForge (www.sf.net)
GitHub (www.github.com)
CodeProject (www.codeproject.com)
BerliOS (www.berlios.de)
Java.net (www.java.net)
Codeplex (www.codeplex.com)
Google Code (code.google.com)

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
http://www.sourceforge.net/
http://www.github.com/
http://www.codeproject.com
http://www.berlios.de
http://java.net
http://www.codeplex.com
http://code.google.com/

ProjectCodeMeter

REVIC

[article cited from Wikipedia]

REVIC (REVised Intermediate COCOMO) is a software development cost model financed by Air Force Cost
Analysis Agency (AFCAA), Which predicts the development life-cycle costs for software development, from
requirements analysis through completion of the software acceptance testing and maintenance life-cycle for
fifteen years. It is similar to the intermediate form of the COnstructive COst MOdel (COCOMO) described by
Dr. Barry W. Boehm in his book, Software Engineering Economics. Intermediate COCOMO provides a set of
basic equations calculating the effort (manpower in man-months and hours) and schedule (elapsed time in
calendar months) to perform typical software development projects based on an estimate of the lines of code to
be developed and a description of the development environment.
The latest version of AFCAA REVIC is 9.2 released in 1994.

REVIC assumes the presence of a transition period after delivery of the software, during which residual errors
are found before reaching a steady state condition providing a declining, positive delta to the ACT during the
first three years. Beginning the fourth year, REVIC assumes the maintenance activity consists of both error
corrections and new software enhancements.

The basic formula (identical to COCOMO):

Effort Applied = ab(KLOC)bb [man-months]

Development Time = cb(Effort Applied)db [months]
With coefficients (different than COCOMO):

Software project ab bb cb db
Organic 3.4644 1.05 3.65 0.38
Semi-detached 3.97 1.12 3.8 0.35
Embedded 3.312 1.20 4.376 0.32

Differences Between REVIC and COCOMO
The primary difference between REVIC and COCOMO is the set of basic coefficients used in the equations.
REVIC has been calibrated using recently completed DoD projects and uses different coefficients. On the
average, the values predicted by the basic effort and schedule equations are higher in REVIC versus
COCOMO. The Air Force's HQ AFCMD/EPR published a study validating the REVIC equations using a
database different from that used for initial calibration (the database was collected by the Rome Air
Development Center). In addition, the model has been shown to compare to within +/- 2% of
expensive commercial models (see Section 1.6).

Other differences arise in the mechanization of the distribution of effort and schedule to the various phases
of the development and the automatic calculation of standard deviation for risk assessment. COCOMO
provides a table for distributing the effort and schedule over the development phases, based on the size of the
code being developed. REVIC provides a single weighted "average" distribution for effort and schedule, along
with the ability to allow the user to vary the percentages in the system engineering and DT&E phases. REVIC
has also been enhanced by using statistical methods for determining the lines of code to be developed. Low,
high, and most probable estimates for each Computer Software Component (CSC) are used to calculate the
effective lines of code and standard deviation. The effective lines of code and standard deviation are then used
in the equations, rather than the linear sum of the estimates. In this manner, the estimating uncertainties can be
quantified and, to some extent, reduced. A sensitivity analysis showing the plus and minus three sigmas for

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
http://en.wikipedia.org/wiki/COCOMO

effort and the approximate resulting schedule is automatically calculated using the standard deviation.

ProjectCodeMeter

Six Sigma
[article cited from Wikipedia]

Six Sigma is a business management strategy originally developed by Motorola, USA in 1981.[1] As of 2010,
it enjoys widespread application in many sectors of industry, although its application is not without
controversy.

Six Sigma seeks to improve the quality of process outputs by identifying and removing the causes of defects
(errors) and minimizing variability in manufacturing and business processes.[2] It uses a set of quality
management methods, including statistical methods, and creates a special infrastructure of people within the
organization ("Black Belts", "Green Belts", etc.) who are experts in these methods.[2] Each Six Sigma project
carried out within an organization follows a defined sequence of steps and has quantified financial targets (cost
reduction or profit increase).[2]

The term six sigma originated from terminology associated with manufacturing, specifically terms associated
with statistical modelling of manufacturing processes. The maturity of a manufacturing process can be
described by a sigma rating indicating its yield, or the percentage of defect-free products it creates. A six-
sigma process is one in which 99.997% of the products manufactured are statistically expected to be free of
defects(3.4 defects per 1 million). Motorola set a goal of "six sigmas" for all of its manufacturing operations,
and this goal became a byword for the management and engineering practices used to achieve it.

Historical overview

Six Sigma originated as a set of practices designed to improve manufacturing processes and eliminate defects,
but its application was subsequently extended to other types of business processes as well.[3] In Six Sigma, a
defect is defined as any process output that does not meet customer specifications, or that could lead to creating
an output that does not meet customer specifications.[2]

Bill Smith first formulated the particulars of the methodology at Motorola in 1986.[4] Six Sigma was heavily
inspired by six preceding decades of quality improvement methodologies such as quality control, TQM, and
Zero Defects,[5][6] based on the work of pioneers such as Shewhart, Deming, Juran, Ishikawa, Taguchi and
others.

Like its predecessors, Six Sigma doctrine asserts that:

Continuous efforts to achieve stable and predictable process results (i.e., reduce process variation) are of
vital importance to business success.
Manufacturing and business processes have characteristics that can be measured, analyzed, improved and
controlled.
Achieving sustained quality improvement requires commitment from the entire organization, particularly
from top-level management.

Features that set Six Sigma apart from previous quality improvement initiatives include:

A clear focus on achieving measurable and quantifiable fina
ncial returns from any Six Sigma project.[2]

An increased emphasis on strong and passionate management leadership and support.[2]
A special infrastructure of "Champions," "Master Black Belts," "Black Belts," "Green Belts", etc. to lead

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
http://en.wikipedia.org

and implement the Six Sigma approach.[2]
A clear commitment to making decisions on the basis of verifiable data, rather than assumptions and
guesswork.[2]

The term "Six Sigma" comes from a field of statistics known as process capability studies. Originally, it
referred to the ability of manufacturing processes to produce a very high proportion of output within
specification. Processes that operate with "six sigma quality" over the short term are assumed to produce long-
term defect levels below 3.4 defects per million opportunities (DPMO).[7][8] Six Sigma's implicit goal is to
improve all processes to that level of quality or better.

Six Sigma is a registered service mark and trademark of Motorola Inc.[9] As of 2006 Motorola reported over
US$17 billion in savings[10] from Six Sigma.

Other early adopters of Six Sigma who achieved well-publicized success include Honeywell (previously
known as AlliedSignal) and General Electric, where Jack Welch introduced the method.[11] By the late 1990s,
about two-thirds of the Fortune 500 organizations had begun Six Sigma initiatives with the aim of reducing
costs and improving quality.[12]

In recent years, some practitioners have combined Six Sigma ideas with lean manufacturing to yield a
methodology named Lean Six Sigma.

Methods

Six Sigma projects follow two project methodologies inspired by Deming's Plan-Do-Check-Act Cycle. These
methodologies, composed of five phases each, bear the acronyms DMAIC and DMADV.[12]

DMAIC is used for projects aimed at improving an existing business process.[12] DMAIC is pronounced
as "duh-may-ick".
DMADV is used for projects aimed at creating new product or process designs.[12] DMADV is
pronounced as "duh-mad-vee".

DMAIC

The DMAIC project methodology has five phases:

Define the problem, the voice of the customer, and the project goals, specifically.
Measure key aspects of the current process and collect relevant data.
Analyze the data to investigate and verify cause-and-effect relationships. Determine what the relationships
are, and attempt to ensure that all factors have been considered. Seek out root cause of the defect under
investigation.

Improve or optimize the current process based upon data analysis using techniques such as design of
experiments, poka yoke or mistake proofing, and standard work to create a new, future state process. Set
up pilot runs to establish process capability.
Control the future state process to ensure that any deviations from target are corrected before they result in
defects. Control systems are implemented such as statistical process control, production boards, and
visual workplaces and the process is continuously monitored.

DMADV

The DMADV project methodology, also known as DFSS ("Design For Six Sigma"),[12] features five phases:

Define design goals that are consistent with customer demands and the enterprise strategy.
Measure and identify CTQs (characteristics that are Critical To Quality), product capabilities,

production process capability, and risks.
Analyze to develop and design alternatives, create a high-level design and evaluate design capability to
select the best design.
Design details, optimize the design, and plan for design verification. This phase may require simulations.
Verify the design, set up pilot runs, implement the production process and hand it over to the process
owner(s).

Quality management tools and methods used in Six Sigma

Within the individual phases of a DMAIC or DMADV project, Six Sigma utilizes many established quality-
management tools that are also used outside of Six Sigma. The following table shows an overview of the main
methods used.

5 Whys
Analysis of variance
ANOVA Gauge R&R
Axiomatic design
Business Process Mapping
Catapult exercise on variability
Cause & effects diagram (also known as fishbone
or Ishikawa diagram)
Chi-square test of independence and fits
Control chart
Correlation
Cost-benefit analysis
CTQ tree
Design of experiments
Failure mode and effects analysis (FMEA)
General linear model

Histograms
Homoscedasticity
Quality Function Deployment (QFD)
Pareto chart
Pick chart
Process capability
Quantitative marketing research through use of
Enterprise Feedback Management (EFM) systems
Regression analysis
Root cause analysis
Run charts
SIPOC analysis (Suppliers, Inputs, Process,
Outputs, Customers)
Stratification
Taguchi methods
Taguchi Loss Function
TRIZ

Implementation roles

One key innovation of Six Sigma involves the "professionalizing" of quality management functions. Prior to Six
Sigma, quality management in practice was largely relegated to the production floor and to statisticians in a
separate quality department. Formal Six Sigma programs borrow martial arts ranking terminology to define a
hierarchy (and career path) that cuts across all business functions.

Six Sigma identifies several key roles for its successful implementation.[13]

Executive Leadership includes the CEO and other members of top management. They are responsible for
setting up a vision for Six Sigma implementation. They also empower the other role holders with the
freedom and resources to explore new ideas for breakthrough improvements.
Champions take responsibility for Six Sigma implementation across the organization in an integrated
manner. The Executive Leadership draws them from upper management. Champions also act as mentors to
Black Belts.
Master Black Belts, identified by champions, act as in-house coaches on Six Sigma. They devote 100% of
their time to Six Sigma. They assist champions and guide Black Belts and Green Belts. Apart from
statistical tasks, they spend their time on ensuring consistent application of Six Sigma across various
functions and departments.
Black Belts operate under Master Black Belts to apply Six Sigma methodology to specific projects. They
devote 100% of their time to Six Sigma. They primarily focus on Six Sigma project execution, whereas
Champions and Master Black Belts focus on identifying projects/functions for Six Sigma.
Green Belts are the employees who take up Six Sigma implementation along with their other job
responsibilities, operating under the guidance of Black Belts.

Some organizations use additional belt colours, such as Yellow Belts, for employees that have basic training in
Six Sigma tools.

Certification

In the United States, Six Sigma certification for both Green and Black Belts is offered by the Institute of
Industrial Engineers[14] and by the American Society for Quality.[15]

In addition to these examples, there are many other organizations and companies that offer certification. There
currently is no central certification body, neither in the United States nor anywhere else in the world.

Origin and meaning of the term "six sigma process"

Graph of the normal distribution, which underlies the statistical assumptions
of the Six Sigma model. The Greek letter σ (sigma) marks the distance on
the horizontal axis between the mean, µ, and the curve's inflection point.
The greater this distance, the greater is the spread of values encountered.
For the curve shown above, µ = 0 and σ = 1. The upper and lower
specification limits (USL, LSL) are at a distance of 6σ from the mean.
Because of the properties of the normal distribution, values lying that far
away from the mean are extremely unlikely. Even if the mean were to move
right or left by 1.5σ at some point in the future (1.5 sigma shift), there is still
a good safety cushion. This is why Six Sigma aims to have processes where
the mean is at least 6σ away from the nearest specification limit.

The term "six sigma process" comes from the notion that if one has six standard deviations between the process
mean and the nearest specification limit, as shown in the graph, practically no items will fail to meet
specifications.[8] This is based on the calculation method employed in process capability studies.

Capability studies measure the number of standard deviations between the process mean and the nearest
specification limit in sigma units. As process standard deviation goes up, or the mean of the process moves
away from the center of the tolerance, fewer standard deviations will fit between the mean and the nearest
specification limit, decreasing the sigma number and increasing the likelihood of items outside specification.[8]

Role of the 1.5 sigma shift

Experience has shown that processes usually do not perform as well in the long term as they do in the short
term.[8] As a result, the number of sigmas that will fit between the process mean and the nearest specification
limit may well drop over time, compared to an initial short-term study.[8] To account for this real-life increase
in process variation over time, an empirically-based 1.5 sigma shift is introduced into the calculation.[8][16]
According to this idea, a process that fits six sigmas between the process mean and the nearest specification
limit in a short-term study will in the long term only fit 4.5 sigmas – either because the process mean will move
over time, or because the long-term standard deviation of the process will be greater than that observed in the
short term, or both.[8]

Hence the widely accepted definition of a six sigma process as one that produces 3.4 defective parts per

million opportunities (DPMO). This is based on the fact that a process that is normally distributed will have
3.4 parts per million beyond a point that is 4.5 standard deviations above or below the mean (one-sided
capability study).[8] So the 3.4 DPMO of a "Six Sigma" process in fact corresponds to 4.5 sigmas, namely 6
sigmas minus the 1.5 sigma shift introduced to account for long-term variation.[8] This takes account of special
causes that may cause a deterioration in process performance over time and is designed to prevent
underestimation of the defect levels likely to be encountered in real-life operation.[8]

Sigma levels

A control chart depicting a process that
experienced a 1.5 sigma drift in the process
mean toward the upper specification limit
starting at midnight. Control charts are used
to maintain 6 sigma quality by signaling
when quality professionals should
investigate a process to find and eliminate
special-cause variation.

The table[17][18] below gives long-term DPMO values corresponding to various short-term sigma levels.

Note that these figures assume that the process mean will shift by 1.5 sigma toward the side with the critical
specification limit. In other words, they assume that after the initial study determining the short-term sigma
level, the long-term Cpk value will turn out to be 0.5 less than the short-term Cpk value. So, for example, the
DPMO figure given for 1 sigma assumes that the long-term process mean will be 0.5 sigma beyond the
specification limit (Cpk = –0.17), rather than 1 sigma within it, as it was in the short-term study (Cpk = 0.33).
Note that the defect percentages only indicate defects exceeding the specification limit to which the process
mean is nearest. Defects beyond the far specification limit are not included in the percentages.

Sigma level DPMO Percent defective Percentage yield Short-term Cpk Long-term Cpk
1 691,462 69% 31% 0.33 –0.17

2 308,538 31% 69% 0.67 0.17

3 66,807 6.7% 93.3% 1.00 0.5

4 6,210 0.62% 99.38% 1.33 0.83

5 233 0.023% 99.977% 1.67 1.17

6 3.4 0.00034% 99.99966% 2.00 1.5

7 0.019 0.0000019% 99.9999981% 2.33 1.83

ProjectCodeMeter

Source lines of code

[article cited from Wikipedia]

Source lines of code (SLOC or LOC) is a software metric used to measure the size of a software program by counting the number
of lines in the text of the program's source code. SLOC is typically used to predict the amount of effort that will be required to
develop a program, as well as to estimate programming productivity or effort once the software is produced.

Measurement methods

There are two major types of SLOC measures: physical SLOC (LOC) and logical SLOC (LLOC). Specific definitions of these
two measures vary, but the most common definition of physical SLOC is a count of lines in the text of the program's source code
including comment lines. Blank lines are also included unless the lines of code in a section consists of more than 25% blank lines.
In this case blank lines in excess of 25% are not counted toward lines of code.

Logical LOC attempts to measure the number of "statements", but their specific definitions are tied to specific computer languages
(one simple logical LOC measure for C-like programming languages is the number of statement-terminating semicolons). It is
much easier to create tools that measure physical SLOC, and physical SLOC definitions are easier to explain. However, physical
SLOC measures are sensitive to logically irrelevant formatting and style conventions, while logical LOC is less sensitive to
formatting and style conventions. Unfortunately, SLOC measures are often stated without giving their definition, and logical LOC
can often be significantly different from physical SLOC.

Consider this snippet of C code as an example of the ambiguity encountered when determining SLOC:

for (i = 0; i < 100; i += 1) printf("hello"); /* How many lines of code is this? */

In this example we have:

1 Physical Lines of Code (LOC)
2 Logical Line of Code (LLOC) (for statement and printf statement)
1 comment line

Depending on the programmer and/or coding standards, the above "line of code" could be written on many separate lines:

for (i = 0; i < 100; i += 1)
{
 printf("hello");
} /* Now how many lines of code is this? */

In this example we have:

4 Physical Lines of Code (LOC): is placing braces work to be estimated?
2 Logical Line of Code (LLOC): what about all the work writing non-statement lines?
1 comment line: tools must account for all code and comments regardless of comment placement.

Even the "logical" and "physical" SLOC values can have a large number of varying definitions. Robert E. Park (while at the
Software Engineering Institute) et al. developed a framework for defining SLOC values, to enable people to carefully explain and
define the SLOC measure used in a project. For example, most software systems reuse code, and determining which (if any)
reused code to include is important when reporting a measure.

Origins

At the time that people began using SLOC as a metric, the most commonly used languages, such as FORTRAN and assembler,
were line-oriented languages. These languages were developed at the time when punched cards were the main form of data entry
for programming. One punched card usually represented one line of code. It was one discrete object that was easily counted. It
was the visible output of the programmer so it made sense to managers to count lines of code as a measurement of a programmer's
productivity, even referring to such as "card images". Today, the most commonly used computer languages allow a lot more
leeway for formatting. Text lines are no longer limited to 80 or 96 columns, and one line of text no longer necessarily corresponds
to one line of code.

Usage of SLOC measures

SLOC measures are somewhat controversial, particularly in the way that they are sometimes misused. Experiments have
repeatedly confirmed that effort is correlated with SLOC, that is, programs with larger SLOC values take more time to develop.

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com
http://en.wikipedia.org

Thus, SLOC can be effective in estimating effort. However, functionality is less well correlated with SLOC: skilled developers
may be able to develop the same functionality with far less code, so one program with less SLOC may exhibit more functionality
than another similar program. In particular, SLOC is a poor productivity measure of individuals, since a developer can develop
only a few lines and yet be far more productive in terms of functionality than a developer who ends up creating more lines (and
generally spending more effort). Good developers may merge multiple code modules into a single module, improving the system
yet appearing to have negative productivity because they remove code. Also, especially skilled developers tend to be assigned the
most difficult tasks, and thus may sometimes appear less "productive" than other developers on a task by this measure.
Furthermore, inexperienced developers often resort to code duplication, which is highly discouraged as it is more bug-prone and
costly to maintain, but it results in higher SLOC.

SLOC is particularly ineffective at comparing programs written in different languages unless adjustment factors are applied to
normalize languages. Various computer languages balance brevity and clarity in different ways; as an extreme example, most
assembly languages would require hundreds of lines of code to perform the same task as a few characters in APL. The following
example shows a comparison of a "hello world" program written in C, and the same program written in COBOL - a language
known for being particularly verbose.

C COBOL

#include <stdio.h>

int main(void) {

 printf("Hello World");
 return 0;
}

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. HELLOWORLD.
000300
000400*
000500 ENVIRONMENT DIVISION.
000600 CONFIGURATION SECTION.
000700 SOURCE-COMPUTER. RM-COBOL.
000800 OBJECT-COMPUTER. RM-COBOL.
000900
001000 DATA DIVISION.
001100 FILE SECTION.
001200
100000 PROCEDURE DIVISION.
100100
100200 MAIN-LOGIC SECTION.
100300 BEGIN.
100400 DISPLAY " " LINE 1 POSITION 1 ERASE EOS.
100500 DISPLAY "Hello world!" LINE 15 POSITION 10.
100600 STOP RUN.
100700 MAIN-LOGIC-EXIT.
100800 EXIT.

Lines of code: 5
(excluding whitespace)

Lines of code: 17
(excluding whitespace)

Another increasingly common problem in comparing SLOC metrics is the difference between auto-generated and hand-written
code. Modern software tools often have the capability to auto-generate enormous amounts of code with a few clicks of a mouse.
For instance, GUI builders automatically generate all the source code for a GUI object simply by dragging an icon onto a
workspace. The work involved in creating this code cannot reasonably be compared to the work necessary to write a device
driver, for instance. By the same token, a hand-coded custom GUI class could easily be more demanding than a simple device
driver; hence the shortcoming of this metric.

There are several cost, schedule, and effort estimation models which use SLOC as an input parameter, including the widely-used
Constructive Cost Model (COCOMO) series of models by Barry Boehm et al., PRICE Systems True S and Galorath's SEER-
SEM. While these models have shown good predictive power, they are only as good as the estimates (particularly the SLOC
estimates) fed to them.

Example

According to Vincent Maraia[1], the SLOC values for various operating systems in Microsoft's Windows NT product line are as
follows:

Year Operating System SLOC (Million)

1993 Windows NT 3.1 4-5[1]

1994 Windows NT 3.5 7-8[1]

1996 Windows NT 4.0 11-12[1]

2000 Windows 2000 more than 29[1]

2001 Windows XP 40[1]

2003 Windows Server 2003 50[1]

David A. Wheeler studied the Red Hat distribution of the Linux operating system, and reported that Red Hat Linux version 7.1
(released April 2001) contained over 30 million physical SLOC. He also extrapolated that, had it been developed by
conventional proprietary means, it would have required about 8,000 person-years of development effort and would have cost
over $1 billion (in year 2000 U.S. dollars).

A similar study was later made of Debian Linux version 2.2 (also known as "Potato"); this version of Linux was originally
released in August 2000. This study found that Debian Linux 2.2 included over 55 million SLOC, and if developed in a
conventional proprietary way would have required 14,005 person-years and cost $1.9 billion USD to develop. Later runs of the
tools used report that the following release of Debian had 104 million SLOC, and as of year 2005, the newest release is going to
include over 213 million SLOC.

One can find figures of major operating systems (the various Windows versions have been presented in a table above)

Operating System SLOC (Million)

Debian 2.2 55-59[2][3]

Debian 3.0 104[3]

Debian 3.1 215[3]

Debian 4.0 283[3]

Debian 5.0 324[3]

OpenSolaris 9.7

FreeBSD 8.8

Mac OS X 10.4 86[4]

Linux kernel 2.6.0 5.2

Linux kernel 2.6.29 11.0

Linux kernel 2.6.32 12.6[5]

Advantages

1. Scope for Automation of Counting: As Line of Code is a physical entity, manual counting effort can be easily eliminated by
automating the counting process. Small utilities may be developed for counting the LOC in a program. However, a code
counting utility developed for a specific language cannot be used for other languages without modification, due to the
syntactical and structural differences among languages.

2. An Intuitive Metric: Line of Code serves as an intuitive metric for measuring the size of software due to the fact that it can be
seen and the effect of it can be visualized. Function points are said to be more of an objective metric which cannot be
imagined as being a physical entity, it exists only in the logical space. This way, LOC comes in handy to express the size of
software among programmers with low levels of experience.

Disadvantages

1. Lack of Accountability: Lines of code measure suffers from some fundamental problems. It might not be useful to measure the
productivity of a project using only results from the coding phase, which usually accounts for only 30% to 35% of the overall
effort.

2. Lack of Cohesion with Functionality: Though experiments have repeatedly confirmed that effort is highly correlated with
LOC, functionality is less well correlated with LOC. That is, skilled developers may be able to develop the same
functionality with far less code, so one program with less LOC may exhibit more functionality than another similar program.

In particular, LOC is a poor productivity measure of individuals, because a developer who develops only a few lines may
still be more productive than a developer creating more lines of code - more so, refactoring or optimization to get rid of
redundant code will mostly reduce the lines of code count.

3. Adverse Impact on Estimation: Because of the fact presented under point #1, estimates based on lines of code can adversely
go wrong, in all possibility. Due to point #2 differential comparison of code versions may produce a negative SLOC result.

4. Developer’s Experience: Implementation of a specific logic differs based on the level of experience of the developer.
Hence, number of lines of code differs from person to person. An experienced developer may implement certain functionality
in fewer lines of code than another developer of relatively less experience does, though they use the same language.

5. Difference in Languages: Consider two applications that provide the same functionality (screens, reports, databases). One of
the applications is written in C++ and the other application written in a language like COBOL. The number of function points
would be exactly the same, but aspects of the application would be different. The lines of code needed to develop the
application would certainly not be the same. As a consequence, the amount of effort required to develop the application
would be different (hours per function point). Unlike Lines of Code, the number of Function Points will remain constant.

6. Advent of GUI Tools: With the advent of GUI-based programming languages and tools such as Visual Basic, programmers
can write relatively little code and achieve high levels of functionality. For example, instead of writing a program to create a
window and draw a button, a user with a GUI tool can use drag-and-drop and other mouse operations to place components
on a workspace. Code that is automatically generated by a GUI tool is not usually taken into consideration when using LOC
methods of measurement. This results in variation between languages; the same task that can be done in a single line of code
(or no code at all) in one language may require several lines of code in another.

7. Problems with Multiple Languages: In today’s software scenario, software is often developed in more than one language.
Very often, a number of languages are employed depending on the complexity and requirements. Tracking and reporting of
productivity and defect rates poses a serious problem in this case since defects cannot be attributed to a particular language
subsequent to integration of the system. Function Point stands out to be the best measure of size in this case.

8. Lack of Counting Standards: There is no standard definition of what a line of code is. Do comments count? Are data
declarations included? What happens if a statement extends over several lines? – These are the questions that often arise.
Though organizations like SEI and IEEE have published some guidelines in an attempt to standardize counting, it is difficult
to put these into practice especially in the face of newer and newer languages being introduced every year.

9. Psychology: A programmer whose productivity is being measured in lines of code will have an incentive to write
unnecessarily verbose code. The more management is focusing on lines of code, the more incentive the programmer has to
expand his code with unneeded complexity. This is undesirable since increased complexity can lead to increased cost of
maintenance and increased effort required for bug fixing.

In the PBS documentary Triumph of the Nerds, Microsoft executive Steve Ballmer criticized the use of counting lines of code:

In IBM there's a religion in software that says you have to count K-LOCs, and a K-LOC is a thousand line of code. How
big a project is it? Oh, it's sort of a 10K-LOC project. This is a 20K-LOCer. And this is 50K-LOCs. And IBM wanted
to sort of make it the religion about how we got paid. How much money we made off OS/2, how much they did. How
many K-LOCs did you do? And we kept trying to convince them - hey, if we have - a developer's got a good idea and he
can get something done in 4K-LOCs instead of 20K-LOCs, should we make less money? Because he's made something
smaller and faster, less K-LOC. K-LOCs, K-LOCs, that's the methodology. Ugh! Anyway, that always makes my back
just crinkle up at the thought of the whole thing.

Related terms

KLOC (pronounced KAY-loc): 1,000 lines of code
KDLOC: 1,000 delivered lines of code
KSLOC: 1,000 source lines of code

MLOC: 1,000,000 lines of code
GLOC: 1,000,000,000 lines of code

ProjectCodeMeter

Logical Lines Of Code (LLOC)

Logical Lines Of Code is the number of programming language statements (also called Effective Lines Of
Code, eLoc, eSLOC, SLOC-L) in the code. What comprises a code statement is language dependent, for C
language "i = 5;" is a single statement.
ProjectCodeMeter uses an LLOC variant similar to the LLOC recommended by the COCOMO-II model (in
contrast to popular belief, COCOMO-II doesn't use physical SLOC which includes empty and comment lines).
The LLOC count variant used by ProjectCodeMeter includes the following improvements:
- auto-generated code lines are ignored
- header files are ignored
- ineffective code statements are ignored
- pragma compiler directives are ignored
- labels are ignored
- switch cases are statements by themselves, not part of the next LLOC
- several statements on the same physical line are counted as several LLOC

Example:
 for (i=0; i < 5; i++;){ //this line counts as 3 LLOCs by ProjectCodeMeter
 CreateUser(i); //the line counts as 1 LLOC
 } //this line counts as 0 LLOC

This LLOC variant can be used with legacy sizing algorithms and cost models, as a higher accuracy input
replacement for the Source Lines Of Code (SLOC) parameter, for example in COCOMO and COSYSMO.

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com

ProjectCodeMeter

Frequently Asked Questions
 System Requirements
 Supported File Types
 General Questions
 Activation and License issues
 Technical Questions and Troubleshooting
 What can i do to improve software development team productivity?
 Which source code metrics are calculated by ProjectCodeMeter?
 How accurate is ProjectCodeMeter software estimation?

javascript:parent.history.back();
javascript:parent.history.go(1);
http://www.projectcodemeter.com

ProjectCodeMeter

General Frequently Asked Questions

Is productivity measurements bad for programmers?

Most often the boss or client will undervalue the programmers work, causing unrealistically early deadlines,
mental pressure, carelessness, personal conflicts, and dissatisfaction and detachment of the programmer,
leading to low quality products and missed schedules (on top of bad feelings).
Being overvalued is dishonest, and leads to overpriced offers quoted by the company, losing appeal to clients,
and ultimately cutting jobs.
Productivity measurements help programmers being valued, (not overvalued nor undervalued) which is a good
thing.

Why not use cost estimation methods like COCOMO or COSYSMO?

These methods have some uses as tools at the hands of experts, since they will only produce a result as good as
the input estimates they are given, thus require the user to know (or guess) the size, complexity and quantity of
the source code sub components.
ProjectCodeMeter can be operated by a non-developer and usually produces more accurate results in a fraction
of the time and effort.

What's wrong with counting Lines Of Code (SLOC / LLOC)?

Many cost estimation models indeed use LOC as input data, while this has some validity, it is a very inaccurate
measurement unit.
in counting SLOC or LLOC, these two lines would have the same weight:
 i = 7;
 if ((i > 5) && (i < 10)) while(i > 0) ScreenArray[i][i--] = 0xFF;//draw diagonal line
While clearly they require very different effort to create.
As another example, a programmer could spend a day optimizing his source, thus reducing the size by 200 lines
of code, does this mean the programmer had negative productivity? of course not.
ProjectCodeMeter uses a smart differential comparison which takes this into account.

Does WMFP replace traditional models such as COCOMO and COSYSMO?

Not in all cases. WMFP+APPW is specifically tailored to evaluate commercial software project development
time (where management is relatively efficient), while COCOMO evaluates more factors such as design time,
and COSYSMO can evaluate hardware projects too.
WMFP requires having a similar project (analogous), while COCOMO allows you to guess the size (in KLOC)
of the software yourself. So in effect they are complementary.

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com

ProjectCodeMeter

Technical Frequently Asked Questions

Are my source code files secure?

Yes. ProjectCodeMeter is a desktop application, your source never leaves your PC. The main application
doesn't connect to the internet (only the license manager application connects once at activation, with user
approval). See the Changing License Key section for further details.

Where are XLS spreadsheet reports (for Excel)?

ProjectCodeMeter generates CSV reports, as well as special HTML report files that can be opened in
spreadsheet applications such as Microsoft Excel, Gnumeric and OpenOffice Calc. You may rename the HTML
reports to XLS if you want them to be opened by your spreadsheet application upon double-click. See
the Reports section for further details.

Why do the same measurements have different values in various places?

This stems from different rounding done in different contexts, for example when only whole numbers are
displayed, days would be rounded up, but minutes would be rounded down, as it's more intuitive to the user this
way. However if the measurement is displayed with a decimal point, no rounding is done.

Why numbers don't add up?

Because the algorithm uses high precision decimal point to calculate and store data, and numbers usually shown
with no decimal point (integers), the result is that several numbers added may appear to give higher sum than
expected, since the software includes the fraction of a decimal point value. For example 2 + 2 may result in 5,
since the real data is 2.8 + 2.9 = 5.7, but the user only sees the integer part. This is a good thing, since the
calculation and sum is done in a higher precision than what is visible. Please note that while Differential
analysis has an advanced detection for code changes and refactoring, it is not perfect, therefore some refactored
or moved code will show higher differential effort than actual.

Why are all results 0?

1. You may have the files open in another application like your Developer Studio, please save them and close
all other applications.
2. Leaving the Price per Hour input box empty or 0 will result in costs being 0 as well.
3. Enabling the Differential Comparison checkbox causes ProjectCodeMeter to compare the source to another
source version, if that source version is the same then the resulting time and costs will be 0, as
ProjectCodeMeter only shows the differences between the two versions. Disable this checkbox to get a normal
analysis.

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com

4. If the files you analyze contain only visual graphic elements markup (HTML / CSS / RES), the effort will
show 0 as GUI design is not measured.
5. Your source file name extension may not match the programming language inside it (for example naming a
PHP code with an .HTML extension), see the programming languages section.

Why are report files or images missing or not updated?

Make sure you close all other applications that use the report files, such as Excel or your Web Browser, before
starting the analysis.
Reports will be written to the Project Folder, so make sure it is writable and you have access permissions to it,
of example the Program Files folder is usually read-only for normal users, so please copy your Project Folder
somewhere else before analyzing.
On some systems, you may also need to run ProjectCodeMeter under administrator account, do this by either
logging in to Windows as Administrator, or right clicking the ProjectCodeMeter shortcut and select "Run as
administrator" or "Advanced-Run under different credentials". For more details see your Windows help, or
contact your system administrator. NOTE: only Microsoft Excel supports updating HTM and HTML report
files correctly (including the XLS reports generated by ProjectCodeMeter).

You may need more disk space, if you can't free any, try preventing word list reports from being generated by
turning them off in the Advanced Configuration menu.

If you're upgrading from an older ProjectCodeMeter version by installing the new version over the old, the new
version reports WON'T be used since you may have made modification to the report templates and want to
preserve them. In order to use the new reports, select the menu option "Reset Templates Folder.." but be careful
since this will delete any changes you made to the templates (so backup your modified templates if you need
them).

Why is the History Report not created or updated?

The History report is only updated after a Cumulative Differential Analysis (selected by enabling the
Differential Comparison checkbox and leaving the Older Version text box empty).

Reports generation is slow, what can i do?

ProjectCodeMeter creates many reports, one for each template file from the template folder. You can delete
templates of reports you don't need in order to speed up the generation. Use the menu option "Open Templates
Folder" and delete files from there. If you want to restore some of the files you deleted you can always copy the
original from the ProjectCodeMeter install folder (usually under the "Program Files" folder by default), or in
case you want to return all templates to their original factory defaults you can use the "Reset Templates Folder"
menu option (which will lose any custom reports you changed/created). Of course a faster CPU with more L2
cache per core will speed up the entire software operation.

Why can't I see the Charts (there is just an empty space)?

You may need to install the latest version of Adobe Flash ActiveX for Internet Explorer.
If you are running ProjectCodeMeter on Linux Wine (possible but not advised), you will not be able to see
the charts, because of Flash incompatibility issues, installing the Flash ActiveX on wine may cause
ProjectCodeMeter to crash.

file:///C:/Dev/ProjectPricingVS2005/Help/UI_advanced_configuration.htm
http://get.adobe.com/flashplayer/completion/?installer=Flash_Player_10.1_for_Windows_Internet_Explorer

I analyzed an invalid code file, but I got an estimate with no errors, why?

Given invalid or non-standard source code ProjectCodeMeter will do the best it can to understand your source.
It is recommended that the source code be valid (and preferably compilable), but that's
optional. ProjectCodeMeter is NOT a code error checker, rather a coding good practice guider (on top of being
a cost estimator). For error checking please use a static code analyzer like FindBugs / CppCheck as well as
code coverage, and code profiler tools.

Can I install without internet connection?

Activation of either Trial or a Full License requires an internet connection, after that point you may disconnect
from the internet. If this is not possible and you need a special licensing method please contact support. For
further details see the Changing License Key section.

Why header (.h) files aren't measured?

Using modern development tools header files are automatically generated. Coding style where code is placed
into header files is currently not supported, see Supported File Types for further detail.

Why do results differ from older ProjectCodeMeter version?

While WMFP cost model stays the same, our file comparison and analysis engines improve, detecting new
code types and fixing bugs. To consistently compare source code size one should use the same
ProjectCodeMeter version to analyze both - however it is advised to always use the latest ProjectCodeMeter
version, as it offers improved estimation accuracy.
As a general rule, ProjectCodeMeter versions with the same major and first minor digits are feature
compatible, with only bug fixes introduced (for example version 1.20 and 1.26)

Why is estimation too high/low?

Please make sure you didn't include files that shouldn't be measured (such as tests, auto-generated, pre-
existing). Another common mistake is selecting Quality Guarantee which is higher than actual, make sure the
code passed all the testing required for the quality setting or choose a lower one that reflects what was actually
tested.
Please remember WMFP +APPW are statistical models, that fit most project well but others less, see the
Accuracy section for details.

ProjectCodeMeter stuck or crashed, what can i do?

First, Please make sure you are using the latest version (from our website), as it may be a bug we already fixed.
Several reasons may be at fault:
Low memory:
Trying to analyze large source code or with 1000s of file might use up all your PC memory, try analyzing
smaller amount of source code, for instance analyze each folder separately (with up to 18000 files or 500MB
for each Gigabyte of PC RAM)

Unstable Adobe Flash animation:
Flash might be unstable in some systems, try running without flash by running the
"ProjectCodeMeter_Safe_Mode" shortcut from the start menu. Alternatively run from command line (or the
"Run.." box, or Cortana search) like so:
"C:\Program Files\ProjectCodeMeter\ProjectCodeMeter.exe" /NOFLASH
Note this crash/hang mostly happens after all files were analyzed and reports created, so you probably don't
need to analyze again, just look in the reports folder for results.
Another application is using the source or report files:
If you viewed or edited these files, that software might still be deny access to them. Some Ant-Virus and Anti-
Spam apps also deny access to files until they finish scanning them, which can take a long time. Please close all
other applications, or restart Windows, then try again.

Where can I start the License or Trial?

See the Activating or Changing License Key section.

What programming languages and file types are supported by ProjectCodeMeter?

See the programming languages section.

What do i need to install and run ProjectCodeMeter?

See System Requirements.

ProjectCodeMeter

Accuracy of ProjectCodeMeter

ProjectCodeMeter uses the WMFP analysis algorithm and the APPW statistical model at the base of its
calculations. As with all statistical models, the larger the dataset the closer it aligns with the
statistics, therefore the smaller the source code (or the difference) analyzed the higher the probable deviation.
The APPW model assumes several preconditions essential for commercial project development:
A. The programmers are experienced with the language, platform, development methodologies and tools
required for the project.
B. Project design and specifications document had been written, or a functional design stage will be separately
measured.
The degree of compliance with these preconditions, as well as the accuracy of the required user input settings,
affect the level of accuracy of the results.
ProjectCodeMeter measures development effort done in applying a project design into code (by an average
programmer), including debugging, nominal code refactoring and revision, testing, and bug fixing.
Note that it measures only development time, It does not measure peripheral effort on learning, researching,
designing, documenting, packaging and marketing:
creating project design and description documents, research, creating data and resource files, background
knowledge, study of system architecture, code optimization for limited speed or size constraints, undocumented
major project redesign or revision, GUI design, equipment failures, copied code embedded within original
code, fatal design errors.
Also notice that on development processes exhibiting high specification redesign, or on projects where a major
redesign was performed, which caused an above nominal amount of code to get thrown away (deleted),
ProjectCodeMeter will measure development time lower than actual. To overcome this, save sourcecode
snapshot before each major redesign, and use Cumulative Differential Analysis instead of a simple normal
analysis. Please note that Differential analysis does not accounts for refactoring, therefore refactored code will
show higher effort than actual.

Comparison Of Software Sizing Algorithms
According to Schemequest Software, COCOMO II model shows 70% accuracy for 75% of measured projects,
as older COCOMO 81 model showed 80% accuracy for 58 to 68% of measured projects according to a study
done in the US Air Force Institute Of Technology. In comparison, WMFP+APPW showed 82% accuracy for
%80 of the measured projects, breaking the 80/80 barrier.

javascript:parent.history.go(-1);
javascript:parent.history.go(1);
http://www.projectcodemeter.com

Language Specific Limitations
There may be some limitations relating to your project programming language, see Supported File Types.

Computational Precision
Because the algorithm uses high precision decimal point to calculate and store data, and numbers usually shown
with no decimal point (integers), the result is that several numbers added may appear to give higher sum than
expected, since the software includes the fraction of a decimal point value. For example 2 + 2 may result in 5,
since the real data is 2.8 + 2.9 = 5.7, but the user only sees the integer part. This is a good thing, since the
calculation and sum is done in a higher precision than what is visible.

Code Syntax
Given invalid or non-standard source code ProjectCodeMeter will do the best it can to understand your source.
It is best that the source code be valid (and preferably compilable). ProjectCodeMeter is NOT a code error
checker, rather a coding good practice guider (on top of being a cost estimator). For error checking please use
a compiler, a static code analyzer like FindBugs / CppCheck, as well as code coverage, and code profiler
tools.

	Table of Contents
	ProjectCodeMeter Pro
	Software Development Cost Estimation Tool
	Users Manual
	Introduction to the ProjectCodeMeter software
	System Requirements
	Quick Getting Started Guide
	Programming Languages and File Types
	Activating or Changing License Key
	Activation Notes and Troubleshooting:

	Steps for Sizing Future Project for Cost Prediction or Price Quote
	Differential Sizing of the Changes Between 2 Revisions of the Same Project
	Cumulative Differential Analysis
	Estimating a Future project schedule and cost for internal budget planning
	Measuring past project for evaluating development team productivity
	Estimating a Future project schedule and cost for producing a price quote
	Monitoring an Ongoing project development team productivity
	Estimating the Maintainability of a Software Project
	Evaluating the attractiveness of an outsourcing price quote
	Measuring an Existing project cost for producing a price quote
	Steps for Sizing an Existing Project
	Analysis Results Charts
	Project Files List
	Project selection settings
	Settings
	Summary
	Toolbar
	Reports
	Report Template Macros
	Command line parameters and IDE integration
	Integration with Microsoft Visual Studio 6
	Integration with Microsoft Visual Studio 2003 - 2010
	Integration with CodeBlocks
	Integration with Eclipse
	Integration with Aptana Studio
	Integration with Oracle JDeveloper
	Integration with JBuilder

	Weighted Micro Function Points (WMFP)
	Measured Elements
	Calculation

	Average Programmer Profile Weights (APPW)
	Compatibility with Software Development Lifecycle (SDLC) methodologies
	Software Development Productivity Monitoring Guidelines and Tips
	Code Quality Metrics
	Code Quality Notes
	Quantitative Metrics
	COCOMO
	Basic COCOMO
	Intermediate COCOMO
	Detailed COCOMO

	Differences Between COCOMO, COSYSMO, REVIC, Function Points and WMFP
	Cost model optimal use case comparison table:
	COSYSMO
	Cyclomatic complexity
	Description
	Formal definition
	Etymology / Naming

	Applications
	Limiting complexity during development
	Implications for Software Testing
	Cohesion
	Correlation to number of defects
	ProjectCodeMeter variant of cyclomatic counting

	Process fallout
	Halstead complexity measures
	Calculation

	Maintainability Index (MI)
	Calculation

	Process capability index
	Recommended values
	Relationship to measures of process fallout
	Example

	OpenSource code repositories
	REVIC
	Six Sigma
	Historical overview
	Methods
	DMAIC
	DMADV
	Quality management tools and methods used in Six Sigma

	Implementation roles
	Certification

	Origin and meaning of the term "six sigma process"
	Role of the 1.5 sigma shift
	Sigma levels

	Source lines of code
	Measurement methods
	Origins
	Usage of SLOC measures
	Example
	Advantages
	Disadvantages
	Related terms

	Logical Lines Of Code (LLOC)
	General Frequently Asked Questions
	Is productivity measurements bad for programmers?
	Why not use cost estimation methods like COCOMO or COSYSMO?
	What's wrong with counting Lines Of Code (SLOC / LLOC)?
	Does WMFP replace traditional models such as COCOMO and COSYSMO?

	Technical Frequently Asked Questions
	Are my source code files secure?
	Where are XLS spreadsheet reports (for Excel)?
	Why do the same measurements have different values in various places?
	Why numbers don't add up?
	Why are all results 0?
	Why are report files or images missing or not updated?
	Why is the History Report not created or updated?
	Reports generation is slow, what can i do?
	Why can't I see the Charts (there is just an empty space)?
	I analyzed an invalid code file, but I got an estimate with no errors, why?
	Can I install without internet connection?
	Why header (.h) files aren't measured?
	Why do results differ from older ProjectCodeMeter version?
	Why is estimation too high/low?
	ProjectCodeMeter stuck or crashed, what can i do?
	Where can I start the License or Trial?
	What programming languages and file types are supported by ProjectCodeMeter?
	What do i need to install and run ProjectCodeMeter?

	Accuracy of ProjectCodeMeter

